

# ANÁLISE TEMPORAL DE PRECIPITAÇÃO DO MUNICÍPIO DE SERRA GRANDE-PB

Igor Bruno Machado dos Anjos<sup>1</sup>; Fagna Maria Silva Cavalcante<sup>2</sup>; Mariana Lima Figueredo<sup>3</sup>; César Lincoln Oliveira de Souza<sup>4</sup>, Virgínia de Fátima Bezerra Nogueira<sup>5</sup>

- 1-Graduando em Engenharia Ambiental pela Universidade Federal de Campina Grande email:ibrunoanjos@gmail.com
- 2-Graduando em Engenharia Ambiental pela Universidade Federal de Campina Grande email:cavalcante.fagna@gmail.com
- 3-Graduando em Engenharia Ambiental pela Universidade Federal de Campina Grande email:mariana.lima.figueredo@gmail.com
- 4-Graduando em Engenharia Ambiental pela Universidade Federal de Campina Grande email: lincoln\_ambiental@yahoo.com
- 5- Professora do Centro de Ciências e Tecnologia Agroalimentar da Universidade Federal de Campina Grande - CCTA/UFCG – email:virginia.fbnogueira@gmail.com

## INTRODUÇÃO

O estudo de séries temporais se apresenta como importante ferramenta nas diversas áreas de pesquisa. Em termos de variáveis climáticas, a sua aplicação permite identificar tendências e oscilações climáticas possíveis ao longo dos anos, suas causas e/ou efeitos de possíveis irregularidades. O conceito de séries temporais está relacionado a um acumulo de observações de uma determinada variável feita sequencialmente em um período de tempo e ao longo de um determinado intervalo em diferentes instantes do tempo (MORETTIN, P. A. et al, 1981).

A precipitação pluvial tem sido bastante analisada em diferentes regiões do mundo, devido a sua importância no ciclo hidrológico, manutenção dos seres vivos no planeta, economia e a sociedade, como um todo. As secas constituem sério problema para a sociedade humana e para os ecossistemas naturais (DINPASHOH, Y. et al., 2004). O semiárido nordestino vem, ao longo dos anos, configurando-se como um poderoso laboratório de estudos da precipitação pluviométrica, considerando-se a sua alta variabilidade espacial e temporal desta variável. O estado da Paraíba, especialmente, caracteriza-se como um estado altamente vulnerável às irregularidades climáticas reinantes. (COSTA, M. N. M. et al, 2013).

O presente estudo tem por objetivo analisar a distribuição das precipitações pluviais do município de Serra Grande no semiárido paraibano a partir da sua série temporal, utilizando análise estatística para obtenção da tendência linear, considerando a avaliação mensal, e identificar os meses com maiores e menores índices de pluviosidade.

www.conidis.com.br



#### **METODOLOGIA**

O município de Serra Grande-PB está localizado na mesorregião do sertão paraibano, segundo as coordenadas geográficas de 07° 12' 54" de latitude S e 38° 22' 12" de longitude W e altitude de 593 metros, Figura 1.



Fonte: Autores (2017).

Utilizou-se os dados de precipitação das Estações Pluviométricas de Serra Grande (07° 15' 00" latitude S, 38° 19' 00" longitude W) e de Açude Cafundó (7° 12' 20" latitude S, 38° 22' 32" longitude W) pertencente a Agência Nacional das Águas (ANA) e Agência Executiva de Gestão das Águas do Estado da Paraíba (AESA), respectivamente, referente ao período de observação de 1935 a 2016.

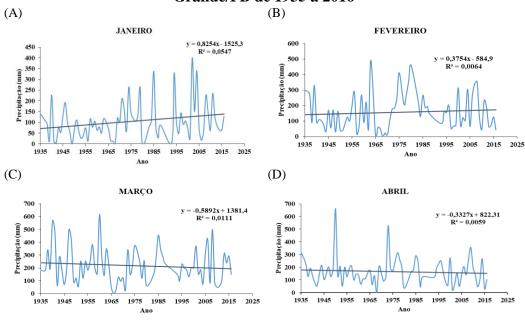
Foi realizada uma análise de consistência dos dados da série, sendo selecionados os anos que continham o menor número de falhas, correspondente ao período de 1935 a 2016, a qual possibilitou a obtenção de uma série de chuva de 73 anos de extensão.

Obteve-se a tendência linear dos valores de precipitação no período correspondente aos 73 anos; também obteve-se as médias, os desvios padrões e os coeficientes de variação de todos os meses, para identificar em quais períodos, dentro da série, a pluviosidade foi maior ou menor.

Os parâmetros estatísticos média, desvio padrão e coeficiente de variação foram obtidos utilizando-se as seguintes equações, respectivamente:

- 1.  $\bar{x} = \sum_{i=1}^{n} \frac{x_i}{n}$ ; em que,  $\bar{x}$  é a média,  $x_i$  são os valores da variável e n o tamanho da série.
- 2.  $S = \sqrt{\frac{\sum (x_i \bar{x})^2}{n-1}}$ ; na qual, S é o desvio padrão,  $x_i$  é o valor da variável,  $\bar{x}$  é a média e

n o número de dados observados.

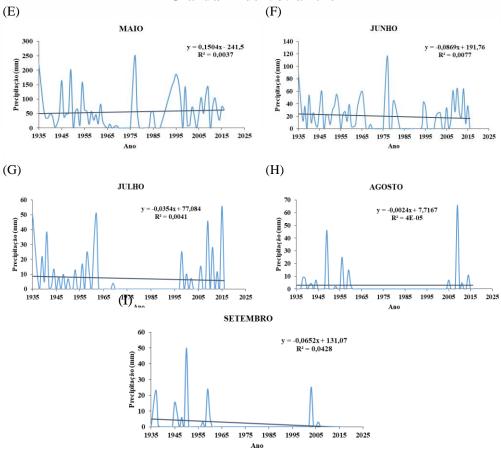

3.  $CV = \frac{S}{x}$ ; na qual, CV é o coeficiente de variação, S é o desvio padrão e x é a média.



## RESULTADOS E DISCUSSÃO

Realizamos uma climatologia com os 73 anos de dados, na qual ficou determinado que o período chuvoso da Cidade se estende de janeiro a maio e o período seco os demais meses do ano. Analisando a série pluviométrica do município observa-se que os quatro meses iniciais do ano apresentaram os maiores valores registrados, Figuras 2 (A), (B), (C), (D), e a maior variabilidade destes, quando comparados aos meses restantes. Destaca-se a tendência positiva de precipitação em janeiro, Figura 2(A). Esses meses fazem parte do período chuvoso da região. A Fig. 2 (C) e (D) tiveram um dos maiores índices de precipitação, porém apresentaram diminuição da pluviosidade com o passar dos anos, com tendência negativa. Esse resultado mostra que a influência dos eventos climáticos ocorridos, os modos de variabilidade climática, foram mais impactante nestes meses. É importante correlacionar esses valores aos modos de variabilidade climática ocorridos no período de 1935 a 2016, em trabalhos futuros. Destacando apenas os episódios de El Niños e La Niñas, disponíveis no sitio do CPTEC/INPE, ocorreram 6 El Niños fortes (1939-41, 57-59, 72-73, 82-83, 90-93 e 97-98) e 6 La Niñas fortes (1938-39, 49-51, 54-56, 73-76, 88-89 e 2007-08) e o último El Niño forte de 2016 (2012-16). Não mencionamos as ocorrências moderadas e fracas desses fenômenos nem o Dipolo do Atlântico, que é de grande importância na variabilidade da precipitação na Paraíba, com 18 eventos ocorridos de 1977 a 2003.

Figuras 2 (A) (B) (C) (D) — Distribuição mensal da precipitação e tendência linear em Serra Grande/PB de 1935 a 2016

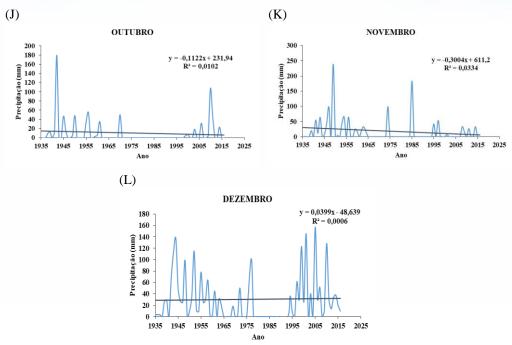



Fonte: Autores (2017).



Percebe-se nas Figuras 3 (E), (F), (G), (H), (I) uma diminuição da chuva a partir do mês de maio que segue até setembro. Os meses de julho (G), agosto (H) e setembro (I) apresentaram os menores valores de pluviosidade, formam o trimestre mais seco dentro do período seco que se estende de junho a dezembro. O que é preocupante são as tendências negativas, pois a pouca chuva que ocorre no período seco é primordial para o sertanejo e sua agricultura de subsistência.

Figuras 3 (E) (F) (G) (H) (I) – Distribuição mensal da precipitação e tendência linear em Serra Grande/PB de 1935 a 2016




Fonte: Autores (2017).

As precipitações voltam a ter um leve aumento nos meses seguintes, Figuras 4 (J), (K), (L), mas essas tendências não foram estatisticamente significativas. Embora não tendo significância estatística apresentaram tendências negativas, em outubro e novembro, como comentado acima é preocupante, pois as chuvas ocorridas no período seco auxiliam muito na agricultura de subsistência e na dessedentação dos animais. Felizmente, dezembro apresentou uma leve tendência positiva. No período seco os meses de novembro e dezembro fazem a pré-estação chuvosa, dentro do período seco são estes os meses que mais chovem.

Figuras 4 (J) (K) (L) — Distribuição mensal da precipitação e tendência linear em Serra Grande/PB de 1935 a 2016





Fonte: Autores (2017).

Na série histórica observa-se o predomínio de tendências negativas, o que representa uma diminuição da pluviosidade com relação ao passar dos anos, e em todos os meses se obteve baixos coeficientes de determinação.

O trimestre mais chuvoso é formado pelos meses de fevereiro, março e abril que apresentaram os melhores volumes de precipitação em relação ao desvio padrão dentro do período de 1935 a 2016, e os meses de agosto e setembro obtiveram os menores valores de desvio padrão para o mesmo período, mostrando assim que nesses meses foram registradas as menores chuvas dentro dos 73 anos estudados.

Tabela 1: Valores obtidos para os parâmetros estatísticos a partir da série de precipitação pluviométrica

|                 | MESES |              |              |              |      |      |      |            |            |      |      |      |
|-----------------|-------|--------------|--------------|--------------|------|------|------|------------|------------|------|------|------|
| PARÂMETROS      | Jan   | Fev          | Mar          | Abr          | Mai  | Jun  | Jul  | Ago        | Set        | Out  | Nov  | Dez  |
| Médias          | 105,1 | 156,5        | 217,6        | 165,2        | 55,6 | 20,0 | 7,1  | 2,9        | 2,3        | 10,3 | 17,9 | 30,2 |
| Desvio Padrão   | 86,0  | <u>114,0</u> | <u>136,0</u> | <u>105,1</u> | 60,2 | 24,1 | 13,5 | <u>9,9</u> | <u>7,7</u> | 27,0 | 40,0 | 40,8 |
| Coefic. Varian. | 0,82  | 0,73         | 0,62         | 0,64         | 1,08 | 1,20 | 1,90 | 3,40       | 3,35       | 2,61 | 2,23 | 1,35 |

Fonte: Autores (2017).

MEDEIROS *et al.* (2016), também encontrou resultados semelhantes para a cidade de Serra Talhada semiárido pernambucano, com os maiores valores de chuva registrados, também, nos meses de fevereiro e março e o menor valor em setembro.

# CONCLUSÕES

www.conidis.com.br



Análises das séries temporais de chuvas são importantes para o entendimento da distribuição destas na área observada e no controle dos recursos hídricos, principalmente em regiões com secas frequentes.

Obteve-se que setembro é o mês de menor precipitação e os maiores índices pluviométricos ocorrem nos meses de fevereiro e março. Verificou-se que a estação chuvosa no município de Serra Grande compreende o período de janeiro a maio e o trimestre mais seco compreende os meses de julho, agosto e setembro. Conclui-se que no período de 1935 a 2016, na maioria dos meses, ocorreu uma diminuição na quantidade de chuvas, levando em consideração que a tendência linear foi negativa. O presente estudo pode ser uma ferramenta importante no planejamento e gerenciamento dos recursos hídricos, gerando ações que minimizem e até evitem a problemática da escassez de água, principalmente em regiões semiáridas do Brasil como é o caso da cidade em questão.

### REFERÊNCIAS BIBLIOGRÁFICAS

AESA, **Agência Executiva de Gestão das Águas do Estado da Paraíba**. Disponível em: <a href="http://www.aesa.pb.gov.br/">http://www.aesa.pb.gov.br/</a>>. Acesso em: março de 2017.

ANA, Agência Nacional das Águas. **Hidroweb**. Disponível em: <a href="http://hidroweb.ana.gov.br/">http://hidroweb.ana.gov.br/</a>>. Acesso em: março de 2017.

COSTA, M. N. M.; BECKER, C. T.; BRITO, J. I. B. Análise Das Séries Temporais De Precipitação Do Semiárido Paraibano Em Um Período De 100 Anos - 1911 A 2010. Revista Brasileira de Geografia Física. V. 06. N. 04. Pag. 680-696. 2013.

DINPASHOH, Y.; FAKHERI-FARD, A.; MOGHADDAM, M.; JAHANBAKHSH, S.; MIRNIA, M. Selection of variables for the purpose of regionalization of Iran's precipitation climate using multivariate methods. Journal of Hydrology, v.297, p.109-123, 2004.

MEDEIROS, M. C. *et al.* Variabilidade espacial e temporal a precipitação no município de Serra Talhada-PE, Brasil. Anais I CONIDIS. Editora Realize. 2016.

MOLION, L. C. B.; BERNARDO, S. Uma revisão da dinâmica das chuvas no Nordeste brasileiro. Revista Brasileira de Meteorologia, v.17, p.1-10, 2002.

MORETTIN, P. A.; TOLOI, C. M. 1981. **Modelos para Previsão de Séries Temporais**, Edgard Blucher, 356p.