

ANÁLISE COMPARATIVA DO DESEMPENHO DO CHIRPS E DADOS PLUVIOMÉTRICOS DE SUPERFÍCIE NA BACIA HIDROGRÁFICA DO RIO IGUAÇU-SARAPUÍ (RJ, BRASIL)

Mariana Oliveira da Costa¹ Antonio Carlos da Silva Oscar Júnior² Vincent Dubreuil³

INTRODUÇÃO

A pluviosidade é considerada como uma variável meteorológica fundamental nos estudos climáticos e ambientais, tendo em vista a sua dinâmica e variabilidade espaço-temporal e sua influência nas atividades cotidianas (CASTELHANO *et al.*, 2017). A intensidade e distribuição pluviométrica afeta diretamente a sociedade, podendo revelar impactos de diferentes magnitudes.

Nessa perspectiva, é necessário que os dados sejam consistentes e confiáveis, sobretudo no que se refere aos dados pluviométricos, sendo este, portanto, um desafio nos estudos climatológicos, considerando diversos fatores que contribuem para a inconsistência de dados. Tais fatores estão associados a mudanças de localização das estações, alterações dos instrumentos, erros na coleta e registro e falta de manutenção (OSCAR JÚNIOR, 2019).

No Brasil, muitos são os desafios e obstáculos encontrados por pesquisadores no que se refere à disponibilidade dados de precipitação *in situ* que possuem uma grande abrangência temporal. É comum encontrar hiatos e falhas nas séries históricas e por isso a qualidade das análises de variabilidade e tendência climática pode ser comprometida. Para superar essa limitação, os satélites meteorológicos se apresentam como uma possibilidade para a realização de estudos com séries temporais longas (SANTOS, *et al.* 2022).

Nesse cenário, encontra-se o *Climate Hazards Group InfraRed Precipitation* with Station data (CHIRPS) desenvolvido pelo *United States Geological Survey* (USGS) e pelo *Climate Hazards Group at the University of California*, Santa Barbara (UCSB), com dados de 1981 até os dias atuais e resolução espacial de 0,05° (aproximadamente 5 km), em escala diária, mensal, anual e em pêntadas (acumulados de cinco dias). No entanto, esse produto tem uma cobertura global, e sua utilização na escala local e regional deve ser feita com cuidado, especialmente nas regiões com uma topografia acidentada.

¹ Doutoranda do Programa de Pós-Graduação em Geografia da UERJ;

² Professor adjunto do Instituto de Geografia da UERJ;

³ Professor da *Université Rennes* 2.

Posto isto, o presente estudo teve como finalidade avaliar o desempenho dos dados de precipitação em escala mensal e diária entre 2008 – 2022 através das estimativas do produto CHIRPS em comparação com os dados de superfície em 08 postos pluviométricos espacializados dentro e na borda exterior da bacia hidrográfica do rio Iguaçu-Sarapuí, localizada na Região Metropolitana do Estado do Rio de Janeiro (RMRJ). Essa comparação teve como finalidade avaliar a aplicabilidade (ou não) do CHIRPS na referida área de estudo, visto que problemas como falhas, ruídos, rupturas e descontinuidades foram detectadas nos postos pluviométricos.

MATERIAIS E MÉTODOS

Área de estudo

A área de estudo do presente trabalho compreende a bacia hidrográfica do rio Iguaçu-Sarapuí. A bacia possui uma área de drenagem de 726 km², sendo 168 km² representada pela sub-bacia do Sarapuí e 558 km² da sub-bacia do Iguaçu, e integra a região hidrográfica da Baía de Guanabara. A bacia engloba vários municípios da Região Metropolitana do Estado do Rio de Janeiro (RMRJ), sendo a maioria destes localizados na Baixada Fluminense. Dentre os municípios estão: Nilópolis, Nova Iguaçu, São João de Meriti, Mesquita, Duque de Caxias e uma pequena parte do município do Rio de Janeiro (CAMPOS, 2004). A Figura 1 apresenta o mapa da área de estudo, assim como a hipsometria da bacia.

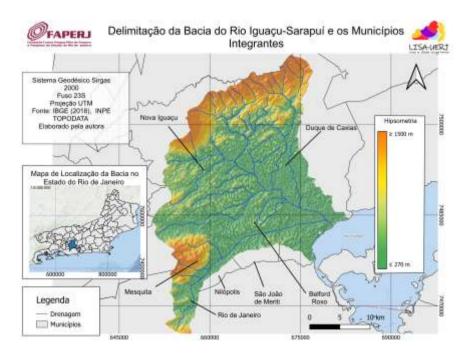


Figura 1 – Localização da área de estudo. Elaborado pelos autores (2023)

Trata-se de uma bacia hidrográfica urbanizada marcada por um histórico de ocorrências de inundações, enchentes e alagamentos; alto grau de alteração do uso e cobertura da terra; presença de remanescentes de Mata Atlântica. Além disso, está em um contexto geomorfológico de baixada, localizada entre dois maciços (Tinguá e Gericinó-Mendanha), com uma vasta rede de drenagem e precipitação anual média em torno de 1700 mm (CAMPOS, 2004). Segundo a classificação de Köppen, o clima é do tipo Aw, ou seja, tropical com estação menos chuvosa durante o inverno (DUBREUIL et al., 2018).

Coleta de dados: dados observacionais e estimados

Os dados pluviais *in situ*, em escala diária e mensal, foram obtidos tendo como base os postos pluviométricos localizados dentro e no limite exterior da bacia. Utilizouse como fonte de dados o Instituto Nacional de Meteorologia (INMET) e o Instituto Estadual do Ambiente (INEA). Ao todo foram utilizadas 8 estações, sendo 6 do banco de dados do INEA disponibilizado através de link via *Google Drive*; e 2 do Banco de Dados Meteorológicos do INMET (BDMEP). A Figura 2 demonstra a localização das estações na área de estudo e os pontos de grade do produto CHIRPS.

Figura 2 – Localização dos postos pluviométricos e dos pontos de grade do produto CHIRPS. Elaborado pelos autores (2024)

A tabela 1 a seguir agrupa informações sobre os postos pluviométricos em relação à porcentagem de dados válidos e falhas, altitude, localização e instituição

responsável. O período de análise tanto em escala diária quanto mensal corresponde a 15 anos (2008 – 2002). O intervalo selecionado teve como critério agrupar estações com séries históricas que possuem um período homogêneo. Existem outras estações na área da bacia, porém com datas de início e fim distintas. Vale ressaltar que destes 8 postos, apenas 1 (Catavento/INEA) tem a série histórica disponível até 2021.

Nome da estação	Órgão	Município	Lat	Long	Altitude	Dados Válidos	Falhas
Catavento	INEA	NOVA IGUAÇU	-22.65	-43.41	6 m	76%	24%
CET Meriti	INEA	SÃO JOÃO DE MERITI	-22.80	-43.37	41 m	89%	11%
GBM	INEA	NOVA IGUAÇU	-22.74	-43.45	17 m	88%	12%
Pt de Ferro Capivari	INEA	DUQUE DE CAXIAS	-22.66	-43.33	4 m	77%	23%
Santa Cruz da Serra	INEA	DUQUE DE CAXIAS	-22.63	-43.28	7 m	88%	12%
Vila Militar	INMET	RIO DE JANEIRO	-22.86	-43.41	30 m	94%	6%
Xerém	INMET	DUQUE DE CAXIAS	-22.58	-43.30	33 m	84%	16%
Xerém	INEA	DUQUE DE CAXIAS	-22.55	-43.30	143 m	82%	18%

Tabela 1 – Informações sobre os dados de superfície. Elaborado pelos autores, 2024.

Os dados estimados foram obtidos do produto CHIRPS V2.0 em escala mensal e diária, sendo extraídos de formas diferentes. Para os dados mensais, foram baixados dados no formato *raster* a adicionados ao *software* Qgis 3.28.6 e foi feito um recorte desses dados utilizando uma camada vetorial com base na área de estudo.

Vale ressaltar que existem pluviômetros que estão fora da área da bacia e por isso o recorte do *raster* não seguiu exatamente o limite da bacia. A partir disso foi possível extrair os valores dos pixels, convertê-los em pontos e abri-los em planilha eletrônica. Ao todo, foram extraídos 80 pontos com valores de precipitação estimada e foram selecionados os pixels que coincidem com a localização dos pluviômetros, sendo esses dados adicionados a uma planilha Excel para efetuar a comparação entre as duas colunas de dados (estimados x *in situ*). A escolha do pixel se deu em função da localização mais próxima do posto pluviométrico, sendo utilizados 8 pontos para as 8 estações em análise.

Já para os dados diários o processamento se deu a partir da plataforma *Google Earth Engine* que utiliza a linguagem de programação JavaScript. Foram utilizados comandos para a obtenção dos acumulados diários para a área da bacia tendo como base os mesmos 80 pontos aplicados na extração dos dados mensais. Após obter os dados em formato CSV, o procedimento se repetiu da mesma forma. Vale ressaltar que em ambas

escalas o período utilizado foi de 1981 até 2022, sendo selecionados para este trabalho os dados a partir de 2008 até 2022.

Técnicas de análises

Os indicadores estatísticos aplicados para a análise foram: correlação de *Pearson* (r) que mede o grau de correlação de linear entre as variáveis, e o coeficiente de determinação (R²) que avaliou o ajuste dos dados do CHIRPS comparado aos dados *in situ* nos pluviômetros. Tratam-se de análises estatísticas que já foram empregadas em trabalhos desenvolvidos por Castelhano *et al.* (2017), Santos *et al.* (2022), Tórnio *et al.* (2024), entre outros.

Além disso, foi realizada a análise comparativa dos quartis representados pelos *boxplots*, sendo identificados o primeiro, segundo e terceiro quartil e média. Para a avaliação dos extremos de precipitação foram aplicados os Percentis 95 e 99 para chuvas intensas e extremas, respectivamente. Todas as referidas análises foram empregadas e analisadas no *software* Microsoft Excel.

RESULTADOS E DISCUSSÕES

Análise dos dados mensais entre 2008 – 2022

A Tabela 2 a seguir apresenta a análise conjunta dos resultados obtidos através dos métodos estatísticos mencionados anteriormente que foram aplicados sobre todos os dados mensais disponíveis (sem falhas) para cada posto pluviométrico entre 2008 e 2022. Com base no coeficiente de determinação (R²), os valores foram aceitáveis em 06 postos, variando de 0,60 a 0,68, e o ajuste foi menor nas estações GBM e Santa Cruz da Serra com 0,40 e 0,55 respectivamente.

Estação	Pixel	R ²	Pearson (r)
Catavento	28	0,60	0,78
CET Meriti	53	0,66	0,82
GBM	43	0,40	0,63
Pt Ferro Capivari	38	0,68	0,82
Santa Cruz da Serra	31	0,55	0,75
Vila Militar	68	0,62	0,80
Xerém INEA	22	0,60	0,77
Xerém INMET	23	0,62	0,79

Tabela 2 – Coeficiente de determinação (R2) e correlação de Pearson (r). Elaborado pelos autores (2024)

Segundo Santos *et. al* (2022), valores de R² a partir de 0,64 podem ser avaliados como muito satisfatórios, e quanto mais próximo de 1 melhor é a correlação entre as

variáveis. Embora valores entre 0,55 e 0,60 não sejam tão altos, são considerados satisfatórios dada a complexidade de se estimar variáveis atmosféricas (TÓRNIO *et al.*, 2024). O melhor ajuste observado foi na estação Ponte de Ferro Capivari com 0,68, conforme pode ser visto no gráfico 1 a seguir.

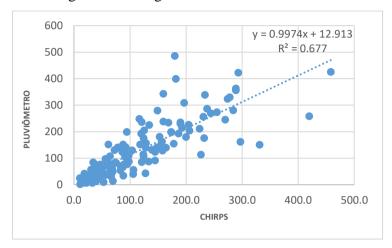


Gráfico 1 – Regressão linear simples no posto pluviométrico Ponte de Ferro Capivari. Elaborado pelos autores, 2024

Quanto a correlação de Pearson (r) os valores encontrados foram positivos, variando de 0,63 a 0,82, indicando uma alta correlação entre os dados de superfície e os dados do CHIRPS. Dentre os postos pluviométricos, três ficaram acima de 0,80, apontando uma correlação forte. Conforme discute Dancey e Reidy (2006) *apud* Tórnio et al. (2024) os resultados da correlação de *Pearson* podem ser classificados da seguinte maneira: de 0,10 a 0,30 como fraca, 0,40 a 0,60 como moderada e entre 0,70 e 1 como uma forte associação. Dos 8 postos, 7 obtiveram valores acima de 0,70, apresentando, portanto, uma ótima correlação.

Em relação à distribuição pluviométrica através dos *boxplots* e seus respectivos valores de quartis, observa-se que para as estações Catavento, CET Meriti, Santa Cruz da Serra, Vila Militar e Xerém/INEA os valores da média, primeiro, segundo e terceiro quartil foram superestimados no produto CHIRPS, com uma diferença de até 23 mm em comparação com os dados registrados nos pluviômetros. Já na estação Xerém/INMET os valores do CHIRPS foram subestimados, com uma diferença de até 38 mm.

No posto Ponte de Ferro Capivari apenas o primeiro quartil foi mais elevado no produto CHIRPS, enquanto que a média, segundo e terceiro quartil registraram valores maiores no dado de superfície, chegando a 33 mm para o 3º quartil. E por fim, no posto GBM a média e o terceiro quartil foram maiores no dado *in situ*, enquanto que no

primeiro e segundo quartil o dado estimado obteve um número maior, porém com uma diferença menos expressiva (5,8 mm).

Os gráficos *boxplots* na Figura 3 demonstram a variabilidade dos dados estimados através do produto CHIRPS e dos dados de superfície dos postos Xerém INMET, Xerém INEA, Ponte de Ferro Capivari e GBM⁴. Pode-se observar que no posto Ponte de Ferro Capivari houve uma maior variação no limite superior do *boxplot* do pluviômetro, enquanto que Xerém INMET e GBM a variabilidade do limite superior não foi tão discrepante. No Xerém INEA observa-se que ambos os dados estão bem próximos de uma simetria, com exceção dos *outliers*.

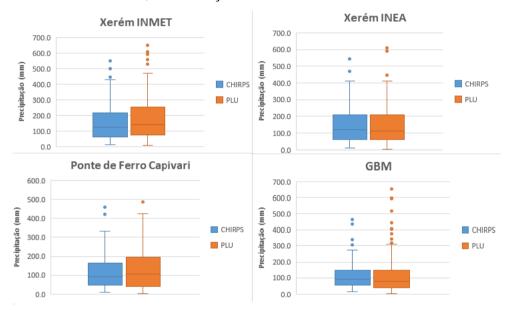


Figura 3 – Gráfico *boxplot* da distribuição pluviométrica mensal dos dados do CHIPRS e dados de superfície. Elaborado pelos autores (2024)

Na análise da precipitação intensa e extrema foi aplicado os Percentis 95 e 99 respectivamente, e notou-se que dos 8 postos pluviométricos, 5 obtiveram valores mais elevados de P95 e P99 nos pluviômetros, enquanto que nos outros 3 postos os valores foram maiores no produto CHIRPS. Observaram-se diferenças expressivas do dado *in situ* em relação ao estimado, como por exemplo, para o P99 no posto GBM houve uma variação de 171 mm e 121,4 mm para o P95.

Análise dos dados diários entre 2008 – 2022

Com relação ao ajuste dos dados diários, verificou-se que os valores da correlação de *Pearson* (r) e do coeficiente de determinação (R²) foram muito baixos, e por isso insatisfatórios. Os valores de r ficaram em torno de 0,22 a 0,30, enquanto que o

⁴ A análise dos *boxplots* foi feita para os 8 pluviômetros da área de estudo, porém para representar neste resumo optou-se pelos 4 acima apresentados.

R² obteve um resultado menor ainda, variando de 0,04 a 0,11. Castelhano *et al.* (2017) também encontrou resultados deficientes na escala diária, não recomendando utilizá-las, enquanto que para a escala mensal os resultados foram satisfatórios.

De uma maneira geral, o CHIRPS superestimou os valores de precipitação diária, no qual todos os 8 postos tiveram valores maiores de média, primeiro, segundo e terceiro quartil no dado estimado, variando entre 0,2 a 9 mm de diferença nestes parâmetros de quartis mencionados. Quanto a análise dos limiares de precipitação intensa e extrema, o Percentil 95 obteve resultados mais elevados no dado estimado em 6 postos, enquanto que para o Percentil 99 os valores foram maiores nos dados observados em 6 pluviômetros.

CONSIDERAÇÕES FINAIS

Em suma, os dados do produto CHIRPS representou satisfatoriamente a variabilidade mensal da pluviosidade em conformidade com os dados de superfície. Os resultados estatísticos na escala mensal foram aceitáveis no coeficiente de determinação e satisfatórios na correlação de *Pearson*. Enquanto que na escala diária percebe-se uma superestimação dos dados do CHIRPS, e valores baixíssimos na análise estatística, não sendo, portanto, recomendado o uso desse produto para a área de estudo em escala diária. Sendo assim, será necessário buscar outras alternativas que possam corroborar para a construção do banco de dados diários.

REFERÊNCIAS

CAMPOS, F. B. L. Gestão de bacias hidrográficas urbanas — estudo de caso da bacia hidrográfica do rio Iguaçu — Sarapuí — Rio de Janeiro. Dissertação de mestrado — Departamento de Engenharia Sanitária e do Meio Ambiente - UERJ, 2004.

CASTELHANO, F. J. *et al.* Correlação entre dados pluviométricos de superfície e satélites para estudos climatológicos. Geosul, v. 32, p. 179-192, 2017.

CHIRPS. Climate Hazards Group InfraRed Precipitation with Station data, 2021. Disponível em: https://www.chc.ucsb.edu/data/chirps. Acesso em: 20 jan. 2024.

DUBREUIL V., FANTE K.P., PLANCHON O., SANT'ANNA NETO J.L. Os tipos de climas anuais no Brasil: uma aplicação da classificação de Köppen de 1961 a 2015. Confins 37, 2018.

OSCAR JÚNIOR., A. C. Homogeneização de dados pluviométricos diários: uma contribuição metodológica. Geo UERJ, Rio de Janeiro, n. 34, e,40957 2019.

SANTOS, B. C. et al. **Análise espaço-temporal da precipitação na região central do estado de São Paulo utilizando dados CHIRPS.** Revista Brasileira de Geografia Física, [s. l.], v. 15, ed. 05, p. 2582-2600, 2022.

TORNIO, C. A. A. *et al.* **Avaliação do desempenho das estimativas de precipitação do produto CHIRPS para os municípios de Niterói e São Gonçalo (RJ).** Revista Brasileira de Climatologia, Dourados, MS, v. 34, Jan. / Jun. 2024, ISSN 2237-8642.