

O USO DA ESTIMULAÇÃO ELÉTRICA FUNCIONAL EM MEMBRO INFERIOR PARÉTICO: RELATO DE CASO.

Chaiany Joyce Dantas Palhares Fonseca Gomes¹; Magdalena Muryelle Silva Brilhante²; Juliana Macedo Campelo de Carvalho³; Adriano Araújo de Carvalho⁴; Roberta de Oliveira Cacho⁵.

- 1- Graduanda do curso de Fisioterapia da Universidade Federal do Rio Grande do Norte (UFRN) Faculdade de Ciências e Saúde do Trairi (FACISA), chaianypalhares@gmail.com;
- 2- Graduanda do curso de Fisioterapia da Universidade Federal do Rio Grande do Norte (UFRN) Faculdade de Ciências e Saúde do Trairi (FACISA), mury_brilhante@hotmail.com;
- 3- Graduanda <mark>do cu</mark>rso de Fisiote<mark>rapia da Universi</mark>dade <mark>Federal do Rio Grande do</mark> Norte (UFRN) Faculdade de Ciências e Saúde do Trairi (FACISA), julianacampelo0824@hotmail.com;
- 4- Fisioterapeuta for<mark>mado</mark> pela Universidade Federal do Rio Grande do Norte (UFRN) Faculdade de Ciências e Saúde do Trairi (FACISA), adrianoaraujofisio@hotmail.com;
- 5- Dr^a em Ciências Médicas da Universidade Estadual de Campinas-UNICAMP, docente do curso de fisioterapia da Universidade Federal do Rio Grande do Norte(UFRN)- Faculdade de Ciências e Saúde do Trairi (FACISA), ro_fisio1@hotmail.com

INTRODUÇÃO

O acidente vascular cerebral(AVC) é um grave problema de saúde global. É a segunda causa mais comum de mortalidade e uma das principais causas de grave incapacidade a longo prazo em adultos. (C. WARLOW, et al,2003). A maioria dos sobreviventes demonstram disfunção motora e incapacidade de deambular na fase aguda, e deficiências da marcha pode permanecer por três meses após o acidente vascular cerebral. (G. CHEN, C. et al, 2005).

Maulden e colaboradores, 2005, têm mostrado que a reabilitação precoce pós-AVC está fortemente associada com uma melhora dos resultados funcionais, especialmente para aqueles com AVC de moderado a grave. Conforme Salter e colaboradores, 2006, que diz que os pacientes internados em reabilitação de AVC no prazo de 30 dias, experimentaram pela primeira vez maiores ganhos funcionais e tempos mais curtos de permanência do que aqueles cuja reabilitação foi adiada para depois de 30 dias de pós AVC.

A estimulação elétrica funcional(FES) foi o primeiro recurso a ser introduzido há mais de cinquenta anos para ajudar pacientes pós AVC com hemiplegia de membro inferior e que foi efetivo

na dorsiflexão de tornozelo em pacientes na fase crônica. (Liberson, et al.,1961). A FES para recuperação funcional deve ser aplicada durante a fase aguda, em vez da fase crônica. (Popovic et al.,2009). Após o AVC, os pacientes apresentam problemas nas atividades de vida diária como comer, lavar roupa e vestir-se, a terapia tem de se concentrar na melhoria do movimento independente para auxiliar nas atividades de vida diária. (Sheng & Lin,2009).

Numerosos estudos têm demonstrado que a FES em pacientes crônicos de AVC com hemiplegia podem aumentar a massa muscular, força, melhorar a velocidade e ritmicidade da marcha, melhorar o controle de tronco e equilíbrio, e melhorar a qualidade da vida (Springer, Laufer, Becher, & Vatine Jean, 2013).

Diante disso, o objetivo desse estudo foi investigar se o uso da estimulação elétrica funcional(FES) após acidente vascular cerebral promove efeitos sob a independência funcional, equilíbrio e comprometimento sensório-motor.

METODOLOGIA

A pesquisa foi realizada na Faculdade de Ciências da Saúde do Trairi-FACISA da Universidade Federal do Rio Grande do Norte-UFRN após o paciente assinar o termo de consentimento livre e esclarecido.

Avaliação

Foi avaliado um indivíduo do sexo masculino com 64 anos de idade com diagnóstico de AVC isquêmico no hemisfério esquerdo, tendo a hemiparesia ao lado direito. Apresentando tempo de lesão de 4 meses e 15 dias. Neste estudo, foram utilizadas as seguintes escalas: Escala de Equilíbrio de Berg(EEB), Escala de Avaliação de Fulg-Meyer(FMA), Escala da medida de independência funcional(MIF). Além da eletromiografia de superfície do músculo tibial anterior.

A Escala de equilíbrio de Berg foi desenvolvida em 1992 por Katherine Berg para avaliar o risco de quedas em idosos. Essa escala avalia o equilíbrio estático e dinâmico envolvendo 14 tarefas comuns da vida diária como alcançar, girar, transferir-se, levantar-se e permanecer em pé. A avaliação é feita através de observação e supervisão se necessário para execução da tarefa. A pontuação varia de 0 a 4 em uma escala totalizando 56 pontos. (MIYAMOTO ST, et al 2004).

A Escala de Avaliação de Fugl- Meyer (FMA), foi desenvolvida e introduzida, em 1975, por Fugl-Meyer e colaboradores. Esta escala foi o primeiro instrumento quantitativo para mensuração sensório-motora da recuperação do AVC. (GLADSTONE DJ et al, 2002). A EFM é um sistema de pontuação numérica acumulativa que avalia seis aspectos do paciente: a amplitude de movimento, dor, sensibilidade, função motora da extremidade superior e inferior e equilíbrio, além da coordenação e velocidade, totalizando 226 pontos. (FUGL-MEYER AR et al,1975).

A escala da Medida de Independência Funcional (MIF) é organizada em 2 dimensões subdivididas em categorias com um total de l8 itens, definidos para avaliar a independência do indivíduo em realizar satisfatoriamente e efetivamente atividades básicas com valor até 126 pontos. Estas atividades incluem o mínimo de habilidade para as categorias de auto cuidado, controle do esfíncter, transferência e locomoção (dimensão motora), comunicação e cognitivo social (dimensão cognitiva). (BERG-EMONS et al., 2001).

A eletromiografia (EMG) é um recurso que capta o sinal mioelétrico resultante dos potenciais de ação das fibras musculares, que ocorrem antes da sua contração. (CARVALHO et al, 2001).

Procedimento:

O protocolo da estimulação elétrica funcional(FES) foi dada da seguinte forma: largura de pulso= 200us, frequência de 30 Hz, tempo de subida=5s, tempo de contração= 10s, tempo de descida=5s, tempo de repouso=10s e intensidade máxima tolerável pelo paciente com o paciente sentado.

Os eletrodos foram colocados no ponto motor do músculo tibial anterior e no nervo fibular situado dois dedos abaixo da cabeça da fíbula. A estimulação deveria provocar a dorsiflexão do tornozelo do membro inferior afetado.

Foi realizado 15 sessões de Estimulação Elétrica Funcional(FES), duas vezes na semana. A avaliação com as escalas de EEB, Fulg-meyer, MIF e eletromiografia de superfície do músculo tibial anterior foram feitas antes e após o protocolo da FES.

Aspectos éticos

O estudo foi aprovado pelo Comitê de Ética em Pesquisa da FACISA – UFRN (Parecer n°.851.220) e o sujeito foi informado sobre o objetivo do estudo e assinou o termo de consentimento livre e esclarecido (TCLE). O estudo está de acordo com os aspectos éticos estabelecidos pela Resolução 466/12 do Conselho Nacional de Saúde que regula as pesquisas realizadas com seres humanos.

RESULTADOS

Como resultados, podemos observar que os valores obtidos nos instrumentos de avaliação utilizados (Tabela 1) apontam para uma diferença nos escores do pré-tratamento para o póstratamento, onde os valores obtidos no pós-tratamento na MIF motora foi 11 pontos a mais que o valor inicial (65% do valor inicial), na MIF Cognitiva foram 2 pontos (20% a mais), na MIF Total foi superior ao pré-tratamento em 13 pontos (30% a mais), na EEB, a pontuação obtida foi 27 (115% a mais), mais que o dobro do valor inicial, e na Fugl Meyer(FMA) de membros inferiores(MMII) o valor pós-tratamento foi 6, o dobro do valor inicial, ou seja, um ganho de 100% em cima do valor pré-tratamento. Podendo ser inferido desta forma que o uso da FES como terapia melhorou a independência funcional e equilíbrio do paciente.

Comparando os dados de RMS (root-mean-square) da Eletromiografia foi verificado aumento de todos os valores do pós-tratamento tanto da CVM como da Flexo-extensão. (Tabela 2). Porém o aumento mais significativo entre os dados pré e pós-tratamento ocorreu na CVM, onde houve um aumento de aproximadamente 258%, indicando que houve melhora no recrutamento e, consequentemente, aumento da força. Já o leve aumento dos dados do membro contralateral é indicativo que houve melhora no aprendizado motor dos movimentos durante as avaliações.

Tabela 1 – Escore dos Instrumentos Avaliados

Instrumentos	Pré -Tratamento	Pós-Tratamento
MIF Motora	17	28
MIF Cognitiva	13	15
MIF Total	30	43
EEB	13	27
Fugl Meyer de Membros Inferiores	3	6

MIF: Medida de Independência Funcional EEB: Escala de Equilíbrio de Berg

Tabela 2 - Dados de root-mean-square (RMS) na avalição da Eletromiografia antes e após o tratamento

	Pré-tratamento	Pós-tratamento
CVM (6 segundos)		
Membro afetado	71,83	257,13
Membro contralateral	266,81	369, 16
Flexo-extensão (15 segundos)		
Membro afetado	50,66	78,31
Membro contralateral	109,41	138,54

Diante dos dados, pode-se inferir que o uso da FES como terapia para recuperação funcional da marcha deste paciente, apresentou resultados positivos e satisfatórios. Visto que o paciente iniciou o tratamento fazendo uso de cadeira de rodas e retornou a deambular antes mesmo da finalização do protocolo.

DISCUSSÃO

Neste estudo foi visto que houve melhora nas atividades de vida diária dada através da MIF, melhorando a independência funcional dada pela estimulação elétrica funcional(FES). Isso corrobora com o estudo de Tong, Ng, & Li, cujo relatório mostrou que os pacientes tratados com FES teve um andar mais rápido, melhora da mobilidade e uma melhora funcional de deambulação.

Com o retorno da capacidade de deambulação adquirida pelo paciente, pode ser justificado pela melhora do equilíbrio constatada na EEB. Guoqing You, e colaboradores, 2012, justifica afirmando que a melhoria na deficiência do equilíbrio contribuiu para a recuperação da mobilidade do membro inferior em pacientes com AVC.

Sullivan e colaboradores, 2011, demonstraram a utilidade da Fulg-Meyer (FMA) para avaliar a recuperação motora dos pacientes precocemente após o AVC. Entretanto, a escala FMA mesmo apresentando uma porcentagem de 100% de melhora, não houve aumento qualitativo, pois em comparação com pontuação total de membro inferior (34 pontos), o máximo atingido pelo paciente foi de 6 pontos.

É importante salientar que o caso clínico exposto se encontra na fase aguda, tendo um poder de plasticidade neural maior quando comparado com casos crônicos. Então, a estimulação elétrica funcional(FES) como tratamento na fase aguda melhora a independência funcional e retorno das atividades de vida diária.

CONCLUSÃO

Com base na interpretação dos resultados obtidos no presente estudo foi possível concluir que o protocolo proposto foi capaz de provocar melhoras na independência funcional e equilíbrio, mas não no comprometimento sensório-motor avaliado pela Fulg-Meyer. Os resultados foram comprovados pelo aumento da RMS (root-mean-square) dada pela Eletromiografia.

REFERÊNCIAS BIBLIOGRÁFICAS

- 1. FUGL-MEYER AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient: 1. A method for evaluation of physical performance. Scand J Rehab Med 1975; 7: 13-31.
- 2. GLADSTONE DJ, Daniells CJ, Black SE. The Fugl-Meyer Assessment of motor recovery after stroke: a critical review of its measurement properties. Neurorehabil Neural Repair 2002; 16: 232-240
- 3. LIBERSON, W.T., Holmquest, H.J., Scot, D., & Dow, M. Functional electrotherapy: Stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch Phys Med Rehabil, 1961, 42, 101-105.
- 4. MIYAMOTO ST, Lombardi Junior I, Berg KO, Ramos LR, Natour J. Brazilian version of the Berg balance scale. Braz J Med Biol Res [serial on the Internet] 2004;37: 1411-21
- 5. POPOVIC, D.B., Sinkjar, T., & Popovic, M.B. Electrical stimulation as a means for achieving recovery of function in stroke patients. Neuro Rehabilitation, 2009,25, 45-58.
- 6. SHENG, B., & LIN, M. (2009). A longitudinal study of functional magnetic resonance imaging in upper-limn hemiplegia after stroke treated with constraint-induced movement therapy. Brain Inj, 2009,23,65-70.
- 7. SPRINGER, S., Vatine, J.J., Lipson, R., Wolf, A., Laufer Y. Effects of Dual-Channel Functional Electrical Stimulation on Gait Performance in Patients with Hemiparesis. Scientific World Journal, 2012, 530906.
- 8. SALTER, K., Jutai, J., Hartley, M., Foley, N., Bhogal, S., Bayona, N., & Teasell, R. Impact of early vs delayed admission to rehabilitation on functional outcomes in persons with stroke. J Rehabil Med, 2006, 38, 113-117.