

ARDUINO NA COZINHA: AUTOMATIZANDO RECEITAS E APRENDENDO A PROGRAMAR NA PRÁTICA

Maria Ionara Da Costa Porto ¹ Clara Laureano Dos Santos ²

Hanniman Denizard Cosme Barbosa³

INTRODUÇÃO

O Arduino é uma plataforma de microcontrolador, que possibilita a realização denominada "computação física", conectando circuitos eletrônicos, interligados aos terminais, visando o controle de dispositivos, como LED e motores, como automatizamos nesta oficina. Para que o Arduino execute suas funções, é necessário o uso de algoritmos, que organizam passos lógicos para transformar entradas em saídas e resolver problemas. Assim, ao programá-lo, é possível interpretar dados de sensores e controlar dispositivos de forma eficiente.

Como o sistema do Arduino se tem uma devida facilidade de uso, como também, de manuseio, se alcançou grande popularidade, já que o mesmo proporciona maior conforto, eficiência e segurança no dia a dia. No entanto, com a sua devida popularização enfrenta-se alguns desafios que se fazem significativos, quanto ao uso, como a escassez de profissionais qualificados, os altos custos que são necessários e a lenta evolução no mercado ainda dificultam sua ampla adoção.

Um microcontrolador, segundo Monk (2013, p. 6), pode ser compreendido como um computador em miniatura, que compartilha características com computadores pessoais, como a capacidade de armazenar programas e dados em sua memória, assim como, interagir diretamente com dispositivos externos por meio das portas de entrada e saída (ou simplesmente portas E/S). Essa característica principal desse microcomputador, permite que o Arduino seja utilizado em diversas aplicações, incluindo projetos de automação residencial, utilizando sensores para monitoramento e controle de variáveis como iluminação, irrigação, temperatura e funcionamento de dispositivos elétricos.

Ao todo, a oficina "Cozinhando com Arduino" foi realizada com uma demonstração prática das possibilidades que o Arduino nos possibilita no cotidiano, especialmente no ambiente doméstico. O objetivo deste estudo é avaliar a viabilidade da automação residencial utilizando itens acessíveis à população, analisando tanto sua funcionalidade quanto seu custo benefício. Assim, pretende-se contribuir para a popularização da automação residencial, fazendo-a se tornar uma alternativa mais acessível e aplicável à realidade.

METODOLOGIA (OU MATERIAIS E MÉTODOS)

Este projeto foi desenvolvido com o objetivo de explorar a viabilidade da automação utilizando a plataforma Arduino e sua IDE para integrar e controlar múltiplos dispositivos em um sistema de automação. Além disso, buscou-se utilizar uma linguagem de programação acessível e de fácil replicação, permitindo que mesmo aqueles sem experiência prévia com a plataforma pudessem compreender e implementar a solução proposta.

Inicialmente, foi realizado o planejamento da oficina, visando torná-la dinâmica e atrativa para os alunos. Em seguida, o código necessário para a automação foi preparado e testado, sempre com foco na sua fácil replicação. Com o código pronto, passou-se para a montagem prática do ambiente, começando pela automação dos dispositivos conectados ao Arduino. Essa etapa incluiu a manipulação e organização dos fios, que foram interligados aos terminais e portas do microcontrolador e distribuídos pela bancada. Além disso, os fios foram conectados a tomadas que permitiram a ligação dos equipamentos utilizados: liquidificador, sanduicheira, cafeteira, fogão elétrico e moedor de grãos. Cada equipamento possuía sua própria tomada, garantindo maior organização e segurança. Após a montagem, foram realizados testes para assegurar o funcionamento correto antes da aplicação com os alunos.

A seleção dos participantes foi feita por meio de um formulário organizado pelo próprio campus. Foram escolhidos 15 alunos, todos participando ativamente das atividades. No início da oficina, o conteúdo foi estruturado em etapas para facilitar a compreensão. Primeiro, foram apresentados conceitos básicos sobre o Arduino e sua aplicação na automação desenvolvida. Em seguida, os alunos tiveram contato com o código implementado e os materiais utilizados, que estavam dispostos em uma bancada separada dos eletrodomésticos.

Para tornar a experiência mais interativa e prática, foi preparada uma atividade em que os alunos utilizaram os dispositivos automatizados para preparar uma refeição. Como a oficina ocorreu no período da tarde, foram disponibilizados pão de forma, queijo, presunto e ovos para fritar, além de duas opções de bebida: suco de polpa pronta (com sabores à escolha) e café, que deveria ser preparado com moedor de grãos.

Após a apresentação, os alunos foram divididos em grupos: alguns ficaram responsáveis pela preparação dos lanches, enquanto outros implementaram ajustes no código. O tempo de execução das tarefas foi definido pelos próprios alunos, dentro de um intervalo previamente estabelecido para facilitar o processo. Ao final, a oficina foi concluída com sucesso, resultando em um aprendizado significativo e na satisfação dos participantes pelo desenvolvimento e execução da proposta.

REFERENCIAL TEÓRICO

O Arduino teve sua origem na Itália como um recurso educacional voltado para estudantes, sendo posteriormente lançado comercialmente em 2005 por Massimo Banzi e David Cuartielles. Desde então, tornou-se uma plataforma amplamente utilizada por fabricantes, estudantes e artistas devido à sua facilidade de uso, durabilidade e versatilidade. Um fator essencial para o sucesso do Arduino foi a disponibilidade de suas licenças de forma gratuita, permitindo o desenvolvimento de placas alternativas de menor custo, tornando a tecnologia acessível a um público mais amplo (MONK, 2013, p. 6-7).

O conceito de computação física, que envolve a interação entre sistemas computacionais e o mundo físico, é fundamental para o funcionamento do Arduino. Já a automação residencial tem sido cada vez mais discutida como uma alternativa para proporcionar conforto, segurança e eficiência energética. De acordo com estudos recentes, cerca de 89,8% da população tem acesso a eletrodomésticos que podem ser automatizados, o que demonstra a viabilidade da implementação de sistemas baseados no Arduino para o dia a dia. No entanto, desafios ainda são encontrados na disseminação dessa tecnologia, como a escassez de profissionais qualificados, os custos elevados dos componentes e a lenta adoção pelo mercado.

A popularização do Arduino tem incentivado a criação de projetos práticos e acessíveis para diversos contextos. Oficinas como a "Cozinhando com Arduino" exemplificam a aplicação da automação em um ambiente doméstico, tornando o aprendizado mais dinâmico e demonstrando o potencial da tecnologia para otimizar tarefas cotidianas. Esse tipo de abordagem permite que indivíduos sem experiência prévia adquiram conhecimentos sobre programação e eletrônica de forma acessível, contribuindo para a disseminação da automação residencial e a integração de soluções inteligentes no cotidiano.

Dessa forma, o estudo e a prática com o Arduino demonstram sua relevância tanto no contexto acadêmico quanto no desenvolvimento de soluções inovadoras para o dia a dia. A expansão do conhecimento sobre a plataforma e a adaptação de seus recursos para aplicações práticas têm potencial para transformar a automação em uma realidade acessível a um público cada vez maior.

RESULTADOS E DISCUSSÃO

A oficina "Cozinhando com Arduino" proporcionou uma experiência prática e envolvente, demonstrando o potencial da automação residencial e sua aplicação no ensino de programação. A atividade foi estruturada de maneira a integrar teoria e prática, permitindo que os participantes compreendessem os conceitos fundamentais da eletrônica embarcada enquanto realizavam experimentações diretas com os dispositivos automatizados.


```
GRAOS.ino
    // Definição do pino do moedor de graos
    unsigned long graos = 5;
6
    unsigned long tempo1 = 2000; // porta 5 moedor, tempo de 2000 ate 5000
    // Variável para controlar o tempo do moedor
    unsigned long ultimoTempo1 = 0;
    void setup()
      // Configuração do pino como saída
      pinMode(graos, OUTPUT);
    void loop() {
      // Obtem o tempo atual
      unsigned long tempoAtual = millis();
      // Controla o que o moedor vai fazer
      if (tempoAtual - ultimoTempo1 >= tempo1) {
        ultimoTempo1 = tempoAtual;
        digitalWrite(graos, !digitalRead(graos)); // Inverte o estado do moedor
      }
```

O primeiro passo da oficina consistiu na apresentação do código-fonte responsável pelo controle dos eletrodomésticos, garantindo que os alunos pudessem entender a lógica de programação aplicada ao Arduino. Em seguida, foi realizada a montagem do circuito, conectando dispositivos como liquidificador, sanduicheira, cafeteira, fogão elétrico e moedor de grãos ao microcontrolador. Essa etapa foi essencial para validar a configuração do sistema e assegurar o funcionamento adequado dos aparelhos.

Com o sistema em pleno funcionamento, os alunos foram divididos em grupos: enquanto alguns ajustavam e testavam o código, outros utilizavam os equipamentos automatizados para preparar alimentos. Essa abordagem colaborativa permitiu um aprendizado dinâmico, incentivando a resolução de problemas e promovendo uma maior familiaridade com os conceitos de automação e programação. A experiência demonstrou que, mesmo sem conhecimentos prévios, os participantes puderam compreender e aplicar os princípios do Arduino de forma intuitiva.

Para avaliar os impactos da oficina, foi aplicado um questionário aos participantes. Os resultados demonstram a eficácia da atividade e sua aceitação pelo público. O primeiro gráfico revela que 100% dos alunos aprovaram a experiência, evidenciando o engajamento e o entusiasmo gerados pela oficina.

Outro aspecto analisado foi o conhecimento prévio dos participantes sobre a aplicação do Arduino na automação residencial. Como mostra o gráfico abaixo, 50% dos alunos desconheciam essa possibilidade, o que reforça a importância de iniciativas como essa para ampliar a compreensão sobre as aplicações práticas da tecnologia.

Além disso, a oficina trouxe contribuições significativas para o ensino de programação. Todos os participantes afirmaram que projetos com Arduino auxiliam no aprendizado da programação, conforme ilustrado no gráfico a seguir. Esse dado reforça a eficácia da metodologia baseada em projetos práticos para o ensino de lógica e desenvolvimento de software.

A experiência também foi avaliada sob a perspectiva do ensino-aprendizagem de forma mais ampla. Os resultados indicam que 100% dos participantes consideram que atividades desse tipo contribuem para a assimilação dos conteúdos, demonstrando o valor de abordagens educacionais interativas e experimentais.

Por fim, os participantes sugeriram melhorias para futuras edições da oficina, destacando o desejo por atividades mais desafiadoras, maior tempo de duração e ampliação da oferta para mais alunos. No entanto, a maioria considerou que a estrutura atual já proporciona uma experiência rica e satisfatória.

Os resultados obtidos reforçam a viabilidade do Arduino tanto como ferramenta educacional quanto como solução acessível para a automação residencial. A oficina permitiu que os alunos explorassem tecnologias de baixo custo de maneira prática e aplicável ao dia a dia. O sucesso da atividade ressalta a importância de iniciativas pedagógicas que combinam tecnologia, experimentação e aprendizado colaborativo, estimulando o interesse pela inovação e pela programação.

CONSIDERAÇÕES FINAIS

A oficina "Cozinhando com Arduino" demonstrou que a automação residencial pode ser implementada de forma acessível e educativa, tornando a tecnologia mais compreensível para diferentes públicos. A experiência proporcionou um aprendizado prático, no qual os participantes puderam visualizar como a programação e a eletrônica podem ser aplicadas no dia a dia, promovendo maior interesse pelo desenvolvimento de soluções tecnológicas. A interação entre os alunos e os dispositivos automatizados evidenciou que, mesmo sem conhecimento prévio em Arduino ou programação, é possível compreender e replicar sistemas automatizados com um nível adequado de instrução.

Os resultados obtidos reforçam o potencial do Arduino como uma ferramenta didática eficaz, especialmente quando aplicado em atividades experimentais que combinam teoria e prática. A abordagem adotada na oficina possibilitou que os alunos desenvolvessem habilidades essenciais, como lógica de programação, trabalho em equipe e resolução de problemas, competências cada vez mais valorizadas no contexto educacional e profissional. Além disso, a viabilidade técnica da automação residencial ficou evidente, mostrando que soluções simples podem melhorar a eficiência energética e o conforto dos usuários.

Conclui-se que iniciativas como essa são fundamentais para democratizar o conhecimento sobre automação e eletrônica, preparando os participantes para explorar novas possibilidades tecnológicas e aplicá-las tanto em projetos educacionais quanto em soluções práticas para o cotidiano. O sucesso da oficina reforça a importância de unir educação e tecnologia, criando experiências enriquecedoras e incentivando a inovação.

Palavras-chave: Arduino, Programação, Ensino-Aprendizagem.

AGRADECIMENTOS

Agradecemos, primeiramente, a Deus, por nos oferecer sabedoria e saúde para concluirmos este estudo, ao campus e à coordenação pelo apoio, ao professor Hanniman pela orientação e maior apoio, durante todo o desenvolvimento e execução do projeto. Um agradecimento especial aos alunos participantes, cujo entusiasmo tornou a oficina ainda mais enriquecedora.

REFERÊNCIAS

https://seer.upf.br/index.php/rep/article/view/8701/114114580

 $\underline{https://unifafibe.com.br/revistasonline/arquivos/revistaeletrica/sumario/69/06022019135904.p}\\ \underline{df}$