

PENSAMENTO COMPUTACIONAL E MATEMÁTICA: UM ESTUDO COM ALUNOS DO 6º ANO

Fabricia da Silva Oliveira ¹

Elsa dos Santos Lopes²

Fábio Aurélio Silva Leite ³

Ana Emília Victor Barbosa Coutinho 4

RESUMO

Este estudo apresenta os resultados de uma investigação realizada no contexto de um Trabalho de Conclusão de Curso, cujo objetivo foi analisar o impacto de atividades plugadas e desplugadas no desenvolvimento de habilidades de Pensamento Computacional e competências matemáticas em uma turma do 6º ano do Ensino Fundamental II. Para isso, foi conduzida uma pesquisa experimental com o intuito de verificar se intervenções pedagógicas baseadas nessas atividades contribuíram para o aprimoramento de habilidades matemáticas relacionadas à unidade temática "Números", conforme previsto na Base Nacional Comum Curricular (BNCC), bem como para o desenvolvimento do Pensamento Computacional. A análise dos dados foi realizada por meio da comparação entre os resultados obtidos nos pré e pós-testes aplicados aos alunos. As atividades plugadas, mediadas por recursos tecnológicos, e as desplugadas, fundamentadas em propostas lúdicas, foram integradas com o objetivo de explorar as habilidades do Pensamento Computacional articuladas aos conteúdos matemáticos. A pesquisa adotou uma abordagem metodológica quali-quantitativa, permitindo uma compreensão mais ampla dos efeitos das intervenções propostas. Os resultados evidenciaram que a combinação dessas metodologias contribuiu significativamente para o desenvolvimento das habilidades investigadas. Além disso, a integração dessas atividades ao ensino de Matemática favoreceu um maior engajamento dos estudantes, promovendo um ambiente de aprendizagem mais interativo, dinâmico e envolvente, o que reforça o potencial dessas abordagens no contexto da educação matemática

Palavras-chave: Pensamento Computacional; Ensino de Matemática; Educação Básica.

INTRODUÇÃO

Nas últimas décadas, o avanço tecnológico tem transformado profundamente a forma como as pessoas se comunicam, trabalham e aprendem. No contexto educacional, essas mudanças evidenciam a necessidade de desenvolver nos estudantes habilidades que vão além da simples memorização de conteúdos, favorecendo o raciocínio lógico, a criatividade e a resolução de problemas. Nesse cenário, o Pensamento Computacional

¹ Graduada do Curso de Licenciatura Plena em Matemática da Universidade Estadual da Paraíba - UEPB. fabricia.oliveira@aluno.uepb.edu.br:

² Graduada do Curso de Licenciatura Plena em Matemática da Universidade Estadual da Paraíba - UEPB, elsa.lopes@aluno.uepb.edu.br;

Graduando do Curso de Licenciatura Plena em Matemática da Universidade Estadual da Paraíba -UEPB, fabio.aurelio@aluno.uepb.edu.br;

Professora orientadora: Universidade UEPB. Doutora. Estadual da Paraíba anaemilia@servidor.uepb.edu.br.

surge como uma competência fundamental, capaz de contribuir para o desenvolvimento do pensamento crítico e de habilidades essenciais a diversas áreas do conhecimento, especialmente na Matemática.

No Brasil, a Base Nacional Comum Curricular (BNCC) reforça essa perspectiva ao enfatizar a necessidade de desenvolver competências como raciocínio lógico, resolução de problemas e o uso consciente de tecnologias no processo educacional (Brasil, 2018). No Ensino Fundamental, o documento enfatiza a importância de uma abordagem que contemple tanto a compreensão de conceitos e procedimentos nos diversos campos da Matemática quanto o desenvolvimento do Pensamento Computacional (Brasil, 2018). Esse enfoque revela uma mudança de paradigma, que valoriza não apenas o domínio técnico, mas também a capacidade de pensar de forma lógica, estruturada e criativa diante de desafios reais.

Ainda conforme a BNCC, o Pensamento Computacional envolve "as capacidades de compreender, analisar, definir, modelar, resolver, comparar e automatizar problemas e suas soluções, de forma metódica e sistemática, por meio do desenvolvimento de algoritmos" (Brasil, 2018, p. 474). Nesse sentido, Brackmann (2017) destaca que o Pensamento Computacional se apoia em quatro pilares interdependentes – decomposição, reconhecimento de padrões, abstração e algoritmos – que, em conjunto, possibilitam uma abordagem estruturada e eficiente para a resolução de problemas. Cada um desses elementos exerce um papel específico na formulação de soluções eficazes e criativas. Para Jeannette Wing (2014), o Pensamento Computacional constitui uma competência essencial a todos, comparável à leitura, à escrita e à aritmética, tornando-se, portanto, uma habilidade indispensável para o século XXI.

Dessa forma, percebe-se que a integração do Pensamento Computacional ao ensino de Matemática constitui uma estratégia essencial para atender as demandas da sociedade contemporânea e às orientações da BNCC (Barbosa; Maltempi, 2020). Tal articulação favorece não apenas o aprimoramento da compreensão dos conceitos matemáticos, mas também o desenvolvimento de competências indispensáveis, como o raciocínio lógico, a resolução de problemas e a aplicação prática do conhecimento em situações do cotidiano.

De acordo com Lee et al. (2011), o Pensamento Computacional pode ser desenvolvido na escola por meio de diferentes abordagens. Entre elas, destacam-se as atividades desplugadas, que dispensam o uso de recursos digitais, e as plugadas, que utilizam tecnologias digitais. Conforme Bell et al. (2009), as atividades desplugadas

envolvem desafios e situações-problema que estimulam os alunos a compreender conceitos fundamentais da Ciência da Computação sem recorrer ao computador. Já as atividades plugadas fazem uso de softwares, aplicativos e linguagens de programação, promovendo uma aprendizagem mais interativa e prática desses conceitos. Além de favorecer o entendimento de algoritmos, lógica computacional e o desenvolvimento de projetos, tais práticas permitem a exploração de conteúdos mais complexos do Pensamento Computacional, como ressaltam Barros, Reategui e Teixeira (2021).

Sendo assim, este trabalho tem como objetivo apresentar os resultados de uma investigação realizada no contexto de um Trabalho de Conclusão de Curso, cujo objetivo foi analisar o impacto de atividades plugadas e desplugadas no desenvolvimento de habilidades de Pensamento Computacional e competências matemáticas em uma turma do 6º ano - Anos Finais do Ensino Fundamental.

Os resultados destacaram que a utilização combinada dessas metodologias contribuiu significativamente para o desenvolvimento das habilidades investigadas. Além disso, ao aliar essas atividades as aulas de Matemática foi possível observar um maior engajamento dos alunos, um ambiente de aprendizagem mais interativo, dinâmico e envolvente, evidenciando o potencial das atividades para o ensino de Matemática

METODOLOGIA

Para alcançar o objetivo proposto, realizou-se um estudo quase-experimental de medidas repetidas do tipo pré—pós com grupo único, estruturado sob uma abordagem de métodos mistos (quali-quantitativa). Conforme Severino (2017), estudos experimentais visam reunir informações iniciais sobre um objeto de estudo, delimitando o campo de investigação e identificando elementos centrais de sua realidade; já delineamentos quase-experimentais permitem avaliar efeitos de intervenções quando não há alocação aleatória, como em arranjos pré—pós com um único grupo. A opção pelos métodos mistos mostra-se adequada quando se pretende articular dados quantitativos — como estatísticas e medidas objetivas — com interpretações qualitativas, que consideram o contexto e as interações humanas (Flick, 2009). Nessa perspectiva, conforme ressalta Creswell (2017), a integração entre dados qualitativos e quantitativos enriquece o processo analítico, proporcionando uma compreensão mais ampla e aprofundada do fenômeno investigado.

O experimento foi conduzido na turma do 6º Ano C dos Anos Finais do Ensino Fundamental, composta por 27 alunos, da Escola Professor Jorge de Menezes, situada

na Avenida Agamenon Magalhães, s/n, Centro, na cidade de Sertânia/PE. As atividades ocorreram ao longo do terceiro bimestre do ano letivo de 2024, no contexto da disciplina eletiva Tecnologia e Cidadania Digital, a qual proporcionou um ambiente propício à exploração dos conceitos propostos pela pesquisa. Os encontros foram realizados semanalmente às quintas-feiras, das 12h50 às 14h30, de acordo com a carga horária destinada à disciplina.

Para o desenvolvimento do experimento, elaborou-se um conjunto de sete atividades, sendo cinco desplugadas e duas plugadas, estas últimas utilizando a linguagem de programação Scratch. O Quadro 1 descreve as atividades desenvolvidas e aplicadas com o propósito de estimular o Pensamento Computacional e reforçar conceitos matemáticos por meio de propostas lúdicas e interativas.

Quadro 1 - Descrição das atividades desenvolvidas.

Título da atividade	Tipo	Conteúdos matemáticos (BNCC)	Pilares do Pensamento Computacional	Descrição
Zig Zag da Adição e Subtração (Machado, 2021, p. 171)	Desplugada	Operações com números naturais: adição e subtração (EF06MA03)	Algoritmos	Jogo em duplas com tabuleiro e dados que estimula o raciocínio lógico e a criatividade na resolução de operações.
Missão Matemática Espacial (Oliveira, 2025, p. 36)	Desplugada	Multiplicação e divisão com números naturais (EF06MA03, EF06MA05, EF06MA06)	Decomposição, reconhecimento de padrões e algoritmos	Narrativa de exploração espacial com desafios progressivos que envolvem cálculos e raciocínio lógico em grupo.
Dominó de Divisão (Oliveira, 2025, p. 37)	Desplugada	Divisão com números naturais (EF06MA03)	Reconheciment o de padrões e algoritmos	Jogo em grupos com peças que relacionam divisões e resultados, promovendo cooperação e aprendizado lúdico.
Avançando com o Resto (Machado, 2021, p. 166)	Desplugada	Divisão e multiplicação; divisões exatas e inexatas (EF06MA03)	Algoritmos	Jogo em duplas com dados e tabuleiro que reforça conceitos de divisão e compreensão do resto de forma prática e divertida.
Bingo Matemático (Oliveira,	Desplugada	Operações básicas: adição, subtração,	Decomposição, algoritmos e reconhecimento	Bingo com cálculos nas cartelas que desenvolve cálculo mental, lógica e

2025, p. 40)		multiplicação e divisão (EF06MA03, EF06MA04)	de padrões	colaboração entre os alunos.
Calculando a Idade no Scratch (Oliveira, 2025, p. 41)	Plugada	Subtração com números naturais (EF06MA04)	Algoritmos	Programação no Scratch para calcular a idade; introduz conceitos de algoritmo e lógica de forma interativa.
Algoritmo Par ou Ímpar (Machado, 2021, p. 214)	Plugada	Identificação de números pares e ímpares (EF06MA04)	Algoritmos	Criação de programa no Scratch para verificar se um número é par ou ímpar, estimulando o raciocínio lógico e a abstração.

Fonte: Autoria própria.

Essas atividades foram planejadas de modo a articular os quatro pilares do Pensamento Computacional – decomposição, reconhecimento de padrões, abstração e algoritmos - à resolução de problemas matemáticos, tomando como referência os conteúdos da unidade temática "Números", conforme as diretrizes da Base Nacional Comum Curricular (BNCC).

A avaliação do processo de aprendizagem foi realizada por meio de um instrumento diagnóstico, aplicado em dois momentos: antes (pré-teste) e após (pós-teste) a implementação das atividades. O objetivo foi mensurar tanto os conhecimentos matemáticos quanto as habilidades relacionadas ao Pensamento Computacional.

O instrumento, composto por 10 questões de múltipla escolha, contemplou conteúdos da unidade temática "Números", de acordo com as orientações da BNCC para o 6º Ano do Ensino Fundamental, além de questões voltadas ao raciocínio lógico e à resolução de problemas. O pré-teste permitiu identificar o conhecimento prévio e o nível de familiaridade dos alunos com os conceitos matemáticos fundamentais, enquanto o pós-teste buscou avaliar os avanços na aprendizagem e as possíveis dificuldades ainda existentes.

De forma complementar, aplicou-se um questionário qualitativo direcionado à professora regente da turma, com o intuito de registrar suas percepções acerca da efetividade das atividades desenvolvidas, dos desafios enfrentados durante a aplicação e dos impactos observados na aprendizagem dos estudantes. A inclusão desse instrumento

teve como propósito enriquecer a análise dos dados, ampliando a compreensão sobre o processo de ensino-aprendizagem e fornecendo subsídios para futuras intervenções pedagógicas.

RESULTADOS E DISCUSSÃO

Para avaliar o impacto da aplicação das atividades plugadas e desplugadas, foram consideradas as notas obtidas nos pré e pós-testes. Ambos os testes continham o mesmo conjunto de questões, o que possibilitou uma análise consistente do nível de compreensão dos alunos em relação às quatro operações com números naturais, antes e após as intervenções.

O pré-teste foi aplicado no dia 8 de agosto de 2024, com o objetivo de diagnosticar o conhecimento prévio dos alunos. A aula teve início com uma breve apresentação do projeto, destacando seus objetivos e sua relevância. Neste dia participaram da aplicação do pré-teste 23 alunos. Embora muitos tenham considerado o teste fácil, foram observadas dificuldades na interpretação de problemas envolvendo multiplicação e divisão, especialmente na escolha do cálculo adequado.

No dia 21 de outubro de 2024, foi aplicado o pós-teste com o objetivo de avaliar o progresso dos alunos após a realização das atividades plugadas e desplugadas. Nessa ocasião, estiveram presentes 17 alunos. Foram utilizadas as mesmas questões do pré-teste, o que permitiu uma comparação direta e precisa dos resultados, evidenciando o impacto das intervenções no desenvolvimento das habilidades dos estudantes.

A turma era composta por 27 alunos, todos participantes das atividades ao longo do processo. No entanto, apenas 17 realizaram tanto o pré-teste quanto o pós-teste, constituindo a amostra considerada para análise. Essa limitação de participantes nos testes se deve a fatores como ausências pontuais e imprevistos no dia das aplicações. Entretanto, apesar da redução no número de participantes, essa amostra mostrou-se suficiente para oferecer indícios relevantes sobre o impacto das atividades no processo de aprendizagem. A Tabela 1 apresenta as notas obtidas pelos estudantes nos dois momentos avaliativos.

Tabela 1 - Notas obtidas pelos alunos nos pré e pós-testes.

Aluno		Pré-teste	Pós-teste
	A1	9,0	9,0
	A2	4,0	6,0
	A3	6,0	10,0
	A4	4,0	9,0
	A5	7.0	10.0

A6	7,0	7,0
A7	8,0	10,0
A8	5,0	8,0
A9	7,0	10,0
A10	10,0	9,0
A11	9,0	10,0
A12	8,0	9,0
A13	8,0	5,0
A14	10,0	10,0
A15	9,0	10,0
A16	6,0	9,0
A17	10,0	10,0
T (D 1 1	•

Fonte: Dados da pesquisa.

As notas obtidas no pré-teste e no pós-teste compõem os dados quantitativos do estudo. Nesse contexto, as atividades plugadas e desplugadas são definidas como variáveis independentes, enquanto as notas dos testes representam as variáveis dependentes. Para realizar os cálculos desta pesquisa, foi utilizado o software R⁵. A Tabela 2 apresenta um resumo dos dados descritivos, incluindo o tamanho da amostra (n), a média das notas (M) e o desvio-padrão (DP), facilitando uma análise inicial das intervenções realizadas como uso de atividades plugadas e desplugadas para integrar conceitos matemáticos e habilidades do Pensamento Computacional.

Tabela 2 – Dados descritivos das notas dos alunos nos pré e pós-testes.

Variável dependente	n	M	DP
Pré-teste	17	7,47	1,97
Pós-teste	17	8,88	1,54

Fonte: Dados da pesquisa.

Os dados descritivos apresentados na Tabela 2 indicam uma melhoria no desempenho dos alunos após a intervenção educacional. A média das notas aumentou de 7,47 no pré-teste para 8,88 no pós-teste, sugerindo um impacto positivo das atividades aplicadas. Além disso, a redução do desvio-padrão de 1,97 para 1,54 revela uma menor dispersão das notas no pós-teste, o que indica uma maior homogeneidade no desempenho dos alunos. Esses resultados apontam que o uso de atividades plugadas e desplugadas contribuíram para uma melhor assimilação dos conceitos matemáticos e para o desenvolvimento de habilidades ligadas ao Pensamento Computacional.

A Figura 1 apresenta boxplots lado a lado dos pré e pós-testes, exibindo mediana, intervalo interquartil e eventuais outliers, o que permite comparar a dispersão

⁵ https://www.r-project.org/

e as mudanças de desempenho antes e após as intervenções com atividades plugadas e desplugadas.

9 œ Nota ထ 2

Figura 1 - Boxplots das notas dos alunos nos pré e pós-testes.

Fonte: Dados da pesquisa.

Pós-Teste

Pré-Teste

Para verificar se a diferença na média do pré-teste comparada à média do pós-teste é estatisticamente significativa foi aplicado o teste t de Student pareado. Esse teste é indicado para comparar as médias de dois conjuntos de dados dependentes, ou seja, quando as amostras estão relacionadas entre si, como no caso dos resultados obtidos pelos mesmos alunos antes e após a intervenção. Um dos pressupostos para a aplicação do teste t é que a distribuição das diferenças entre os pares de dados seja aproximadamente normal. Os dados atenderam ao pressuposto de normalidade das diferenças (Shapiro-Wilk: W = 0.966, p = 0.074 > 0.05), permitindo aplicar o teste t pareado, que indicou melhora significativa do pré para o pós-teste (t(16) = -2.91, p =0,010), com média superior no pós (M = 8,88; DP = 1,54 vs. M = 7,47; DP = 1,97) e tamanho de efeito moderado (d = 0.73), evidenciando impacto relevante da intervenção (Cohen, 1988).

Ao término da aplicação das atividades, foi realizado um questionário com a professora da turma, com o objetivo de compreender seu perfil docente, suas percepções sobre a eficácia das atividades e sua compreensão acerca do Pensamento Computacional. A docente, licenciada em Matemática e com mais de cinco anos de experiência, relatou possuir familiaridade básica com ferramentas digitais e costuma integrar recursos lúdicos e tecnológicos às aulas para tornar o aprendizado mais envolvente. Em sua avaliação, o uso do Scratch e de atividades lúdicas aumentou significativamente o interesse e a participação dos alunos nas aulas de Matemática,

facilitando a compreensão de conceitos abstratos e promovendo o pensamento crítico e criativo

A professora destacou ainda que a integração entre programação e Matemática tornou o aprendizado mais concreto e significativo, evidenciando avanços nas habilidades relacionadas ao Pensamento Computacional - como decomposição de problemas, reconhecimento de padrões, abstração e formulação de algoritmos. No entanto, apontou desafios como a falta de familiaridade inicial dos alunos com o Scratch e a heterogeneidade dos níveis de conhecimento da turma, o que exigiu adaptações nas estratégias de ensino. Como sugestões de aprimoramento, recomendou a implementação de atividades com dificuldade progressiva e o fortalecimento da abordagem interdisciplinar, ampliando o uso do Scratch em outras áreas do conhecimento.

CONSIDERAÇÕES FINAIS

O estudo teve como objetivo apresentar os resultados de uma investigação realizada no contexto de um Trabalho de Conclusão de Curso, cujo objetivo foi analisar o impacto de atividades plugadas e desplugadas no desenvolvimento de habilidades de Pensamento Computacional e competências matemáticas em uma turma do 6º ano -Anos Finais do Ensino Fundamental. Constatou-se que ambas as abordagens contribuíram positivamente para a aprendizagem dos alunos: as atividades plugadas, que utilizam recursos tecnológicos, favoreceram o desenvolvimento de habilidades matemáticas e computacionais, embora tenham enfrentado limitações de infraestrutura, como a escassez de computadores e de espaço físico. Já as atividades desplugadas mostraram-se uma alternativa eficaz e inclusiva diante dessas restrições, promovendo o engajamento e a participação de todos os estudantes por meio de metodologias acessíveis e interativas. A análise estatística dos pré e pós-testes revelou melhorias significativas no desempenho dos alunos, evidenciando a efetividade das intervenções realizadas.

Os resultados demonstraram que a combinação de atividades plugadas e desplugadas proporcionou uma aprendizagem mais dinâmica, significativa e alinhada às competências da BNCC, especialmente no desenvolvimento do raciocínio lógico, da resolução de problemas e do uso consciente da tecnologia. Apesar das limitações da pesquisa, como a amostra reduzida e o tempo curto de intervenção, os achados confirmam a relevância do Pensamento Computacional no ensino de Matemática e reforçam a necessidade de ampliar estudos futuros com mais participantes, diferentes

conteúdos e maior duração. Assim, integrar essas abordagens representa uma inovação pedagógica capaz de tornar o ensino mais interativo, criativo e conectado às demandas educacionais do século XXI.

REFERÊNCIAS

- BARBOSA, L. L. S.; MALTEMPI, M. Matemática, Pensamento Computacional e BNCC: desafios e potencialidades dos projetos de ensino e das tecnologias na formação inicial de professores. Revista Brasileira de Ensino de Ciências e Matemática, v. 3, n. 3, 2020.
- BARROS, T. T. T.; REATEGUI, E. B.; TEIXEIRA, A. C. Avaliando uma formação em pensamento computacional com atividades plugadas criadas no Scratch. Revista Tecnologias Educacionais em Rede (ReTER), n. 3, p. e2/01–17, out. 2021.
- BELL, T.; ALEXANDER, J.; FREEMAN, I.; GRIMLEY, M. Computer science unplugged: School students doing real computing without computers. New Zealand Journal of applied computing and information technology, v. 13, n. 1, p. 20–29, 2009.
- BRACKMANN, C. P. Desenvolvimento do Pensamento Computacional através de atividades desplugadas na Educação Básica. Tese (Doutorado) — Universidade Federal do Rio Grande do Sul (UFRGS), 2017.
- BRASIL. Base Nacional Comum Curricular (BNCC). Brasília, DF: Ministério da Educação (MEC), Secretaria de Educação Básica, 2018.
- COHEN, J. Statistical power analysis for the behavioral sciences. 2. ed. Hillsdale: Lawrence Erlbaum Associates, 1988.
- CRESWELL, J. W. Projeto de Pesquisa: Métodos qualitativo, quantitativo e misto. Porto Alegre: Artmed, 2017.
- FLICK, U. Introdução à Pesquisa Qualitativa. 3. ed. Porto Alegre: Artmed, 2009.
- LEE, I.; MARTIN, F.; DENNER, J.; COULTER, B.; ALLAN, W.; ERICKSON, J.; WERNER, L. Computational thinking for youth in practice. ACM Inroads, v. 2, n. 1, p. 32-37, 2011.
- MACHADO, J. A. C. Pensamento computacional integrado à matemática: uma proposta de atividades de estudo para o 6º ano do ensino fundamental II. 2021. Dissertação (Mestrado) – Universidade Federal de Santa Maria, Santa Maria, RS, 2021.
- OLIVEIRA, F. S. Pensamento computacional no ensino de matemática: um estudo com alunos do 6º ano do ensino fundamental. 2025. TCC (Graduação) -Universidade Estadual da Paraíba, Monteiro, 2025.
- SEVERINO, A. J. Metodologia do trabalho científico. 2. ed. São Paulo: Cortez, 2017.
- WING, J. M. Computational thinking benefits society. 40th anniversary blog of social issues in computing, v. 2014, p. 26, 2014.

