

A CRIPTOGRAFIA COMO ESTRATÉGIA DIDÁTICA PARA O ENSINO DE MATRIZES NO ENSINO SUPERIOR

Naiara Lima Costa ¹

INTRODUÇÃO

O ensino de matrizes e suas operações é componente curricular do ensino médio, além de constituir a base para a Geometria Analítica e a Álgebra Linear em cursos de nível superior. Na área da engenharia, por exemplo, o conteúdo tem inúmeras aplicações e, por isso, serve como base para outras disciplinas que compõem a grade curricular, sendo substancialmente importante para a formação e atuação profissional do(a) engenheiro(a) (Pescador et al., 2011). Entre as inúmeras possibilidades de aplicação do conteúdo, a criptografia, ou seja, a conversão de informações em um código ilegível, é uma das práticas que pode ser explorada em sala de aula como estratégia para o ensino de produtos de matrizes e matrizes inversas (de Souza Pereira e Costa, 2017). Além disso, o processo contribui para o desenvolvimento de outras habilidades, como a resolução de sistemas de equações lineares e demais operações matriciais envolvidas na codificação de mensagens.

Diante do exposto, o presente trabalho discute a relevância de práticas pedagógicas diferenciadas no ensino de matemática, destacando os beneficios da inserção de atividades diferenciadas em sala de aula. A pesquisa avaliou o desenvolvimento de atividades em grupo, por meio da decodificação de mensagens em um curso de primeiro ano de engenharia, objetivando a fixação de dois conteúdos previamente ministrados: produto de matrizes e matrizes inversas. A análise baseia-se na aplicação da cifra de Hill, técnica que associa valores numéricos às letras do alfabeto e aplica transformações que não permitem a identificação direta da informação original (Barbosa e Cornelissen, 2017). Além disso, o trabalho discute outras metodologias alternativas que podem ser incorporadas ao processo de ensino de matrizes, contribuindo para a aprendizagem dos estudantes e atrelando outros conteúdos a este desenvolvimento.

A prática se mostrou eficiente e permitiu avaliar a assimilação de conteúdo dos discentes. Além disso, o auxílio de acordo com as necessidades de cada aluno foi mais bem trabalhado, dado a identificação das principais dificuldades e auxílio colaborativo

¹ Doutoranda em Ciência e Tecnologia de Materiais – POSMAT e Professora substituta do curso de Engenharia de Energia da Universidade Estadual Paulista – UNESP, naiara.costa@unesp.br

entre docente e discente, dado que alunos com maior facilidade e/ou com um ensino básico sem defasagens auxiliaram os colegas de classe.

METODOLOGIA (OU MATERIAIS E MÉTODOS)

O presente trabalho desenvolveu a decodificação de mensagens, a fim de estimular o aprendizado dos alunos, bem como compreender a assimilação de conteúdo dos discentes, sobretudo em relação a produto de matrizes e matrizes inversas. Além disso, os alunos também foram ensinados a criptografar mensagens por meio dos mesmos recursos.

B \mathbf{C} D \mathbf{E} F A G 01 02 03 04 05 07 06 I J K L H M N 08 09 10 11 12 13 14 0 P Q R S \mathbf{T} U 15 17 18 19 20 16 21 V W X Y \mathbf{Z} # 22 23 24 25 26 27 29

Quadro 1. Atribuição de números às letras do alfabeto

Inicialmente, os alunos receberam duas matrizes: uma mensagem criptografada (matriz 2x8) e uma matriz codificadora (2x2).

1) Decodifique

$$\begin{pmatrix} 2 & 3 \\ 1 & 2 \end{pmatrix}$$

Foi explicado aos alunos que o produto da matriz codificadora por uma matriz, também 2x8, contendo uma mensagem inicial, resultou na matriz codificada.

Para decodificar a mensagem, os alunos deveriam encontrar a inversa da matriz codificadora e, posteriormente, encontrar o produto deste resultado pela matriz codificada. A matriz resultante retornava à matriz original, que continha uma mensagem, decifrada através dos números atribuídos às letras no quadro 1.

A proposta foi realizada para a frase 'Vai Corinthians', a fim de indagar os alunos, que não podiam informar aos colegas de outros grupos de qual frase se tratava. A aula antecedeu a final do campeonato paulista de futebol e engajou os discentes. Aos grupos que concluíram a atividade com maior facilidade, foi entregue outra mensagem codificada.

Além de trabalhar produto de matrizes e matrizes inversas, os alunos também foram orientados a fixar o conteúdo de sistemas lineares. Assim, apesar do ensino de outras metodologias de resolução para matrizes inversas 2x2 e 3x3, os discentes foram encorajados a utilizar sistemas lineares para esta resolução, de acordo com a metodologia abaixo, que trabalha produto de matrizes e sistemas lineares:

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \times \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

No caso da proposta em sala de aula, a matriz codificadora foi do tipo 2x2 em função da adequação de tempo, dada a aplicação da atividade após todo conteúdo teórico ministrado. Apesar disso, a mesma metodologia foi explicada para matrizes 3x3 em aula expositiva presencial e em aula gravada disponibilizada aos alunos.

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \times \begin{bmatrix} a & b & c \\ d & e & f \\ a & h & i \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

RESULTADOS E DISCUSSÃO

A metodologia se mostrou eficiente na retenção do conteúdo e permitiu mapear as principais dificuldades. Além disso, a mensagem serviu como estímulo aos grupos que levaram mais tempo em sua resolução e que, curiosos pela reação dos demais grupos, seguiram até encontrar a mensagem. Os discentes com maior dificuldade foram auxiliados pelos colegas do grupo e pela docente, e dúvidas frequentes foram sanadas em

lousa. Todos os grupos finalizaram pelo menos uma das mensagens criptografadas fornecidas.

A atividade também permitiu inferir sobre a lista de exercícios enviada posteriormente, que contextualizou exercícios similares.

Além disso, como os grupos foram encorajados a solucionar a matriz inversa mediante sistemas lineares, em uma codificadora do tipo 3x3 foi possível trabalhar mais de um tipo de resolução de sistema. Assim, como há três sistemas gerados, um em função das variáveis 'a', 'd' e 'g', um em função das variáveis 'b', 'e' e 'h' e outro em função de 'c', 'f' e 'i' é possível trabalhar com os alunos, por exemplo, as metodologias de Cramer, Gauss e Gauss-Jordan. A proposta de mais de uma metodologia de resolução contribui significativamente na retenção de conteúdo, porque permite ao aluno identificar qual metodologia se adequa mais às suas preferências e dificuldades e proporciona acervo às demais disciplinas do curso que dependem deste tipo de resolução, como circuitos elétricos, a título de exemplo.

Outro ponto importante é que outras operações com matrizes são possíveis de serem trabalhadas na metodologia, como por exemplo a soma, subtração e multiplicação por escalar. A matriz codificadora, por exemplo, poderia ter sido fornecida como a combinação de uma dessas operações, ou seja, matriz A + matriz B = codificadora. Ou ainda, matriz $A + 2 \times B = codificadora$.

CONSIDERAÇÕES FINAIS

Na atualidade vivemos os resultados de uma forte e necessária expansão do sistema de ensino superior brasileiro. Contudo, nem sempre a democratização do acesso garante o sucesso acadêmico. Observa-se que muitos alunos apresentam dificuldades distintas de aprendizagem, sobretudo no início da graduação, onde passam por uma transição desafiante que implica em um conjunto de adaptações, sobretudo em cursos de ciências e engenharias (Almeida *et al.*, 2012).

Diante disso, é imprescindível que metodologias eficientes sejam adotadas em sala de aula, permitindo que a retenção do conteúdo seja eficaz. Assim, a proposta de uma atividade diferenciada, em meio as aulas expositivas, se mostrou eficiente no ensino de matrizes, tanto na assimilação de conteúdo, como na participação acadêmica que recorrentemente enfrenta desmotivações.

Apesar da dificuldade de gestão de conteúdo e tempo enfrentada por professores, essa foi uma metologia relativamente rápida e que conseguiu efetivamente contextualizar o tópico. Além disso, a proposta é facilmente aplicada e consegue deixar duas disciplinas densas, como a geometria analítica e a álgebra linear mais palpáveis.

Palavras-chave: Cifra de Hill; Geometria Analítica; Álgebra Linear, Codificação; Engenharia.

AGRADECIMENTOS

À Faculdade de Engenharia e Ciências (FEC) – UNESP/Rosana.

REFERÊNCIAS

ALMEIDA, L. et al. Democratização do acesso e do sucesso no ensino superior: uma reflexão a partir das realidades de Portugal e do Brasil. Revista da Avaliação da Educação Superior (Campinas), v. 17, p. 899-920, 2012.

BARBOSA, L.; CORNELISSEN, M. G.. Cifra de Hill: uma aplicação ao estudo de matrizes. RECEN-Revista Ciências Exatas e Naturais, v. 19, n. 2, p. 152-167, 2017.

PESCADOR, A.; POSSAMAI, J. P.; POSSAMAI, C. R. Aplicação de Álgebra Linear na Engenharia. In: XXXIX Congresso Nacional de Educação em Engenharia (COBENGE), Blumenau, Brasil. 2011.

DE SOUZA PEREIRA, J. R.; COSTA, R. B. Álgebra linear numérica: aplicações em métodos computacionais e sua importância para a engenharia. Mecatrone, v. 2, n. 1, 2017.

