

TEMAS CIENTÍFICOS NO ANIME CELLS AT WORK! (HATARAKU SAIBOU): CONTRIBUIÇÕES PARA O ENSINO DE CIÊNCIAS

Adenilza Dos Santos Piris ¹ Gerlany de Fátima dos Santos Pereira ²

INTRODUÇÃO

Nos últimos anos, o uso de recursos audiovisuais na educação tem se mostrado uma estratégia importante para tornar o processo de ensino e aprendizagem mais dinâmicos (Cocchi *et al.*, 2024). No ensino de Ciências e Biologia, em especial, essas mídias podem facilitar a compreensão de conceitos complexos e estimular o interesse dos estudantes, ao aproximar o conteúdo científico de linguagens mais acessíveis e próximas da sua realidade (Oliveira; Oliveira, 2024).

Entre essas produções, o anime *Hataraku Saibou* (*Cells at Work!*) tem ganhado destaque como uma ferramenta criativa e eficiente para o ensino de Biologia, especialmente em temas relacionados à fisiologia humana, imunologia e histologia. Criado pela mangaká Akane Shimizu e produzido pelo estúdio David Production, o anime representa o corpo humano como uma cidade habitada por células personificadas, que realizam suas funções de forma lúdica e envolvente. Essa forma de representar o funcionamento do corpo desperta o interesse dos alunos e facilita a aprendizagem de maneira significativa (Silva, 2018; Torres *et al.*, 2021).

Ao utilizar elementos da cultura pop, com o qual, muitos estudantes já têm familiaridade, *Cells at Work!* transforma o ambiente de aprendizagem em um espaço mais próximo do cotidiano dos jovens, permitindo que conceitos científicos sejam interpretados de forma contextualizada. Estudos recentes (Oliveira; Oliveira, 2024) mostram que o uso desse tipo de mídia em sala de aula contribui para o desenvolvimento da alfabetização científica, além de promover maior interação entre professor e aluno.

Assim, mais do que uma obra de entretenimento, *Cells at Work!* se mostra uma ferramenta educacional capaz de tornar o ensino e a aprendizagem de conceitos científicos mais acessíveis, interessantes e significativos. Diante disso, este estudo busca responder à seguinte pergunta: como o anime *Cells at Work!* pode ser utilizado como ferramenta pedagógica para o ensino de Biologia no ensino básico?

¹ Graduanda pelo Curso de Licenciatura em Ciências Naturais, com Habilitação em Biologia da Universidade do Estado do Amapá - UEAP, <u>adenilzasantos.ueap@gmail.com</u>;

² Professora Orientadora: Doutora em Educação em Ciências e Matemáticas, Universidade do Estado do Amapá - UEAP, gerlany.pereira@ueap.edu.br.

Como objetivo geral, pretende-se investigar como o anime *Cells at Work!* pode ser utilizado como recurso didático no ensino de Ciências. E, como objetivos específicos, estudar como os processos biológicos e as funções das células são retratados no anime e avaliar a precisão científica dessas representações.

REFERENCIAL TEÓRICO

O anime "Cells at Work!" (Hataraku Saibou) é uma série que personifica as células do corpo humano, transformando conceitos científicos complexos em histórias envolventes e acessíveis (Figueredo; Silva, 2020). Este estudo revisa a literatura sobre o uso de "Cells at Work!" como recurso didático para o ensino de ciências, destacando suas contribuições e potencialidades pedagógicas

Diversas pesquisas apontam que o uso de animes e outras mídias audiovisuais pode contribuir para a melhoria da aprendizagem em Ciências, principalmente por favorecer a compreensão de conteúdos abstratos. Segundo Santos, Vasconcelos e Dantas (2019), o anime *Hataraku Saibou* apresenta potencial pedagógico para o ensino de imunologia, pois traduz processos biológicos complexos, como o funcionamento das células de defesa e as respostas imunes em narrativas visuais. Os autores destacam ainda que o caráter lúdico e narrativo do anime facilita a assimilação dos conteúdos e estimula a curiosidade científica dos alunos.

Silva (2018), ao analisar o uso do mesmo anime no ensino de fisiologia, afirma que a representação das células como personagens humanizados, dotados de funções e personalidades específicas, pode ser um fator motivador para a aprendizagem. As analogias criadas entre os personagens e as células reais, como o glóbulo vermelho atuando como entregador e o glóbulo branco como um policial, tornam o conteúdo mais próximo da realidade dos estudantes. Essa característica dialoga com a teoria da aprendizagem significativa proposta por Ausubel (2000), segundo a qual o aprendizado é mais duradouro quando o novo conhecimento se relaciona com experiências prévias do indivíduo.

Para Oliveira e Oliveira (2024), a principal contribuição dos animes no ensino de Ciências está na capacidade de aproximar a linguagem científica da linguagem cotidiana, reduzindo a distância entre o conhecimento escolar e o universo cultural dos alunos. Os autores ressaltam que a utilização de animes como *Cells at Work!* pode atuar como uma ponte entre a abstração dos conceitos biológicos e a concretude das situações vividas no dia a dia, possibilitando uma maior identificação do estudante com o conteúdo.

Outros estudos, como o de Campos e Cruz (2020), reforçam essa ideia ao analisarem as potencialidades de *Cells at Work!* para o ensino de Biologia. Segundo os autores, o anime apresenta uma quantidade expressiva de informações científicas, representadas por meio de metáforas visuais que auxiliam na compreensão dos processos fisiológicos. Entretanto, alertam para a importância de o professor mediar a atividade, contextualizando as cenas e corrigindo eventuais imprecisões conceituais que possam surgir.

Também há experiências que mostram bons resultados no uso de trechos do anime em atividades de aprendizagem baseada em vídeo, especialmente no ensino de histologia e imunologia como as de Cocchi *et al.* (2024); Santos, Vasconcelos e Dantas (2019). Nessas propostas, os alunos não apenas assistem às cenas, mas discutem criticamente as representações e comparam-nas com o conhecimento científico real, desenvolvendo competências de análise e reflexão.

De modo geral, os trabalhos revisados convergem na ideia de que o uso de *Cells at Work!* como recurso didático pode enriquecer o ensino de Ciências ao unir conhecimento científico, ludicidade e cultura digital. O anime se apresenta, assim, como uma ferramenta que contribui não apenas para a aprendizagem conceitual, mas também para o engajamento e o desenvolvimento do pensamento crítico dos estudantes.

MATERIAIS E MÉTODOS

A pesquisa foi conduzida sob uma abordagem qualitativa, conforme Minayo (2008), que destaca a importância de compreender os fenômenos em sua complexidade e contexto. Esse enfoque permitiu analisar as representações dos processos biológicos e funções celulares presentes no anime *Cells at Work!*, avaliando sua precisão científica e seu potencial pedagógico.

De acordo com Minayo (2008), a pesquisa qualitativa busca interpretar significados e compreender a realidade analisada. Assim, o anime foi tratado como um produto cultural e educacional, examinado quanto à sua capacidade de representar processos científicos de forma acessível e precisa.

Para a interpretação dos dados, utilizou-se a análise de conteúdo proposta por Bardin (2011), dividida em três etapas: (1) Pré-análise, com a seleção de episódios que abordam processos biológicos como transporte de oxigênio e resposta imunológica; (2) Exploração do material, na qual foram criadas categorias de análise "Resposta Imunológica", "Ciclo Celular" e "Reparação Tecidual", comparadas com referências científicas; e (3) Tratamento e

interpretação, com a discussão sobre a precisão científica e o potencial pedagógico das representações.

Além disso, realizou-se uma revisão de literatura, com base em artigos do Google Acadêmico, sobre o uso de recursos audiovisuais e materiais culturais no ensino de Ciências, oferecendo suporte teórico à pesquisa.

Essa metodologia possibilitou avaliar a precisão científica do anime e identificar seu potencial como ferramenta didática, promovendo um ensino mais lúdico, acessível e significativo no Ensino Fundamental e Médio.

RESULTADOS E DISCUSSÃO

Os resultados da presente pesquisa evidenciaram que o anime oferece uma representação detalhada e dinâmica dos processos biológicos e das funções celulares, utilizando uma abordagem criativa para tornar conceitos científicos mais acessíveis e engajantes. A análise de episódios específicos permite compreender como as estruturas e funções celulares são personificadas para criar um cenário educativo repleto de potencial pedagógico.

Processos biológicos e as funções das células e suas representações no anime "Cells at Work!"

No anime, os diferentes tipos de células são antropomorfizados e retratados como personagens que desempenham seus papéis biológicos de maneira heroica e interativa. Criamos categorias de análise para retratar esses processos biológicos, a saber: "Sistema imunológico", "Transporte de oxigênio" e "Coagulação sanguínea".

Por exemplo, na categoria "Sistema imunológico", as células brancas (neutrófilos) são apresentadas como policiais ou guerreiros que protegem o corpo contra agentes patogênicos, o que reflete a resposta imunológica inata. Episódios que mostram os neutrófilos combatendo bactérias patogênicas (como o episódio 1: "*Pneumococcus*" e o Episódio "*Harmful Bacteria*" exemplificam a fagocitose e reforçam o entendimento da importância do sistema imunológico.

Ainda para a mesma categoria temos no anime *Cells at Work!* os linfócitos T e B, que são representados de forma fiel às suas funções biológicas. Os linfócitos T são retratados como

³ Este episódio mostra os neutrófilos enfrentando a bactéria *Streptococcus pneumoniae*, ilustrando o processo de fagocitose e a importância da resposta imunológica inata.

⁴ Neutrófilos são retratados combatendo bactérias nocivas, reforçando o papel do sistema imunológico na proteção do corpo.

combatentes ágeis e ferozes, encarregados de destruir células infectadas por patógenos ou células danificadas⁵. Essa representação é consistente com suas funções reais no sistema imunológico, onde os linfócitos T citotóxicos desempenham um papel crucial na imunidade celular ao atacar células infectadas por vírus ou tumores (Jesus, 2002). Já os linfócitos B, apresentados como produtores de anticorpos, refletem com precisão sua função essencial na imunidade humoral, ativando-se para produzir proteínas específicas que neutralizam ou marcam os patógenos para destruição.

Para a categoria "Transporte de Oxigênio e Dióxido de Carbono", temos os glóbulos vermelhos (hemácias), que no anime são representados como trabalhadores que transportam oxigênio e dióxido de carbono pelo corpo, ilustrando visualmente o processo de troca gasosa⁶. Essa abordagem permite que os alunos relacionem as funções celulares ao contexto diário, facilitando o entendimento de conceitos abstratos. A forma como esses processos são narrados e visualizados está alinhada com o enfoque Ciência, Tecnologia e Sociedade (CTS), como discutido por Rocha, Silva e Heerdt (2021), que ressaltam a relevância de mídias audiovisuais para promover a conexão entre ciência e o cotidiano dos alunos.

Essa personificação ilustra de forma clara e lúdica o papel crucial das hemácias no transporte de gases, alinhando-se às descrições científicas. Segundo Alberts *et al.*, (2017), as hemácias são especializadas em transportar oxigênio por meio da hemoglobina, uma proteína que se liga ao oxigênio nos pulmões e o libera nos tecidos.

Outra temática explorada no anime é a "Cicatrização e reparação tecidual". As Plaquetas, por exemplo, são retratadas como pequenas personagens trabalhando em conjunto para reparar danos nos vasos sanguíneos⁷, proporcionando aos alunos uma visualização clara do processo de coagulação sanguínea.

⁵ Os linfócitos T são retratados como combatentes ágeis e ferozes em diversos episódios. Aqui estão alguns exemplos relevantes: Episódio 2: "Scrape Wound" - Os linfócitos T combatem bactérias que invadem uma área lesionada, ilustrando sua resposta rápida contra patógenos. Episódio 5: "Influenza" - Este episódio mostra os linfócitos T enfrentando células infectadas pelo vírus da gripe, reforçando sua função no sistema imunológico adaptativo. Episódio 6: "Cedar Pollen Allergy" - Durante uma reação alérgica, os linfócitos T aparecem combatendo erroneamente substâncias não patogênicas, o que é um exemplo interessante de um desequilíbrio imunológico. Esses episódios são excelentes para ilustrar o papel dos linfócitos T no combate a infecções e podem ser usados como ferramentas pedagógicas para discutir a imunidade adaptativa e os desafios enfrentados pelo sistema imunológico.

⁶ o Episódio 1: "*Pneumococcus*" retrata os glóbulos vermelhos (hemácias) como trabalhadores que transportam oxigênio dos pulmões para os tecidos e retornam com dióxido de carbono para os pulmões. Esse episódio oferece uma visão clara e lúdica do processo de troca gasosa, ilustrando de maneira acessível a função essencial das hemácias no sistema circulatório. Essa abordagem ajuda a simplificar conceitos importantes, tornando-os mais compreensíveis e envolventes para o público jovem.

As plaquetas são retratadas como pequenas personagens adoráveis e organizadas trabalhando em conjunto para reparar danos nos vasos sanguíneos no Episódio 1 de Cells at Work!, intitulado "Pneumococcus". Nesse episódio, elas desempenham um papel crucial na coagulação sanguínea, ilustrando de forma visual e lúdica o processo de

Na categoria "Coagulação Sanguínea", as plaquetas também são abordadas de forma lúdica, traduzindo com precisão suas funções reais na coagulação e cicatrização. Esse processo, cientificamente conhecido como hemostasia, envolve a adesão das plaquetas aos locais de lesão vascular, formando um tampão que previne a perda excessiva de sangue (Berger *et al.*, 2014). A metáfora usada no anime para mostrar as plaquetas "trabalhando em equipe" ajuda a simplificar um processo biológico complexo, tornando-o mais acessível para o público jovem. Essa visualização permite abordar temas como hemofilia e trombose de maneira acessível e atrativa.

Avaliação da precisão científica dessas representações em Cells at Work!

O anime *Cells at Work!* destaca-se por sua fidelidade científica em representar processos biológicos e funções celulares. A maior parte das descrições, como a fagocitose realizada pelos neutrófilos ou o transporte de oxigênio pelas hemácias, está em conformidade com a literatura acadêmica. Embora dramatize eventos biológicos para fins narrativos, o anime respeita os princípios básicos da biologia celular. Segundo Alberts *et al.*, (2017), essa abordagem é eficaz em comunicar a base científica sem comprometer a precisão.

Ao transformar células em personagens cativantes e narrativas dinâmicas, *Cells at Work!* demonstra um enorme potencial para facilitar a compreensão e retenção de conceitos científicos. Estudos como os de Gee (2007) indicam que recursos audiovisuais interativos promovem maior engajamento, especialmente entre jovens. O anime ilustra processos como a resposta imunológica, o transporte de gases e a coagulação de maneira acessível, incentivando os espectadores a se interessarem por biologia.

Entretanto, a mediação docente é indispensável para evitar possíveis interpretações equivocadas. Professores podem usar o anime para introduzir os temas de forma atraente e, em seguida, aprofundar-se nos detalhes científicos, conectando-os ao currículo escolar. Assim, *Cells at Work!* não apenas torna a biologia mais compreensível, mas também promove o interesse dos estudantes pelas ciências da vida, alinhando-se às diretrizes de ensino interativo e interdisciplinar.

CONSIDERAÇÕES FINAIS

O anime *Cells at Work!* revelou-se uma ferramenta pedagógica valiosa para o ensino de Ciências, unindo representações criativas a uma base científica sólida. A análise dos

reparação tecidual. Essa representação é uma maneira criativa de ensinar sobre a importância das plaquetas no sistema circulatório e no processo de cicatrização.

processos biológicos e funções celulares personificados no anime evidenciou como conceitos complexos, como a imunidade adaptativa, o transporte de gases e a coagulação sanguínea, podem ser apresentados de forma lúdica e didática, promovendo um aprendizado significativo e engajador.

A fidelidade científica observada nas representações, como o papel dos linfócitos T e B, das hemácias e das plaquetas, garante que o anime possa ser integrado ao ensino sem comprometer a precisão dos conteúdos. Por meio de metáforas acessíveis, como os neutrófilos sendo guerreiros ou as hemácias como entregadoras, *Cells at Work!* simplifica temas biológicos sem distorcer seus fundamentos, atendendo às necessidades de alunos com diferentes estilos de aprendizagem. Essa abordagem é respaldada por estudos que destacam a eficácia de materiais audiovisuais no ensino de Ciências (Santos, 2010; Berk, Rocha, 2019).

Contudo, ressalta-se a importância da mediação docente no uso do anime, para contextualizar dramatizações e aprofundar o entendimento dos conceitos. Professores podem utilizar episódios específicos como ponto de partida para debates, aulas expositivas e atividades práticas, conectando os temas apresentados no anime com as realidades biológicas e sociais. Essa interação crítica é essencial para evitar interpretações equivocadas e para maximizar o potencial educativo do material.

Por fim, a pesquisa demonstra que integrar mídias audiovisuais ao ensino é uma estratégia inovadora e eficaz, com potencial para transformar as aulas de Ciências em experiências mais atrativas e significativas. Ao explorar *Cells at Work!* como recurso didático, abre-se um caminho para práticas pedagógicas que unem ciência, criatividade e relevância social, inspirando uma nova geração de alunos a compreender e valorizar as ciências da vida.

Palavras-chave: Processos biológicos; Funções celulares; Transporte de gases; Coagulação sanguínea; Mediação docente.

REFERÊNCIAS

ALBERTS, B. *et al.* **Biologia molecular da célula**. 6 ed. Porto Alegre. Artmed Editora, 2017. Disponível em: <a href="https://books.google.com.br/books?hl=pt-BR&lr=&id=DlMmDwAAQBAJ&oi=fnd&pg=PR1&dq=Alberts+et+al.+(2017)&ots=pfrA1Q_KlX&sig=Swn_8PqNZF328W_mzQvsFFDyKkc#v=onepage&q=Alberts%20et%20al.%20(2017)&f=false.Acesso em: 27 fev. 2025.

AUSUBEL, D. P. Aquisição e retenção de conhecimentos: uma perspectiva cognitiva. Tradução de Lígia Teopisto; revisão científica de Vítor Duarte Teodoro. Lisboa: Plátano Edições Técnicas, 2000. Disponível em: https://www.mackenzie.br/fileadmin/

<u>ARQUIVOS/Public/1-mackenzie/universidade/pro-reitoria/graduacao-assuntosacad/forum/X</u> <u>Forum/livroAusubel.2000_Aquisicao_e_retencao_de_conhecimentos.pdf</u>. Acesso em: 30 set. 2025.

BARDIN, L. Análise de conteúdo. São Paulo: Edições 70, 2011.

BERK, A.; ROCHA, M. O uso de recursos audiovisuais no ensino de ciências: uma análise em periódicos da área. **Revista Contexto & Educação**, v. 34, n. 107, p. 72-87, 2019. Disponível em: DOI:https://doi.org/10.21527/2179-1309.2019.107.72-87. Acesso em: 05 mar. 2025.

BERGER, M. *et al.* Hemostasia: uma breve revisão. **Caderno Pedagógico**, v. 11, n. 1, 2014. Disponível em: <a href="https://www.researchgate.net/profile/Adilson-Damasceno-2/publication/290139213_HEMOSTASIA_E_PROCEDIMENTOS_ANTI-HEMORRAGICOS/links/569e8d3c08ae2c638eb572bb/HEMOSTASIA-E-PROCEDIMENTOS-ANTI-HEMORRAGICOS.pdf. Acesso em: 07 mar. 2025.

CAMPOS, T. R.; CRUZ, D. M. Análise de conceitos científicos presentes no anime Hataraku Saibou. **Debates em Educa**ção, [S. l.], v. 12, n. 27, p. 703–723, 2020. DOI:10.28998/2175-6600.2020v12n27p703-723. Disponível em: https://www.seer.ufal.br/index.php/debateseducacao/article/view/8595. Acesso em: 20 fev. 2025.

COCCHI, J. F. *et al.* Cenas do anime Cells at Work! como ferramenta didática na aprendizagem baseada em vídeo no ensino de histologia. **Revista Multidisciplinar de Educação e Meio Ambiente**, v. 5, n. 1, p. 13-25, 2024. **DOI:** https://doi.org/10.51189/integrar/rema/4163. Acesso em: 03 fev. 2025.

FIGUEIREDO, B. C. P.; DA SILVA, T. S. "Hataraku Saibou" para o Ensino de Bioquímica não Presencial. **Revista de Ensino de Bioquímica**, v. 18, n. 2, p. 30-39, 2020. Disponível em: https://www.bioquimica.org.br/index.php/REB/article/view/938. Acesso em: 18 fev. 2025.

GEE, J. P. Good video games and good learning. University of Wisconsin _x0002_Madison Madison, 2007.

JESUS, M. C. Imunologia do câncer. 2002. 31 f. Trabalho de Conclusão de Curso (Graduação de licenciatura em Ciências Biológicas.) - Centro Universitário de Brasília, Faculdade de Ciências da Saúde, Brasília, 2002. Disponível em: https://repositorio.uniceub.br/jspui/handle/123456789/2487. Acesso em: 23 fev. 2025.

OLIVEIRA, J. C.; OLIVEIRA, C. S. Usos do anime "*Cells at Work*" (Hataraku Saibou): reflexões para o ensino de Ciências e Biologia. *In:* ENCONTRO NACIONAL DE ENSINO DE BIOLOGIA, 9.; ENCONTRO REGIONAL DE ENSINO DE BIOLOGIA MG/GO/TO/DF, 7., 2024, Belo Horizonte. **Anais eletrônicos** [...]. Belo Horizonte, 2024. p. 1 – 18. Disponível em: https://publicacoes.sbenbio.org.br/trabalhos/e0386.pdf. Acesso em: 04 jan. 2025.

MINAYO, M. C. S. **O** desafio do conhecimento: pesquisa qualitativa em saúde. São Paulo: Hucitec, 2008.

ROCHA, T. M.; SILVA, J.; HEERDT, B. O uso dos filmes de ficção científica para o ensino de ciências com enfoque ciência, tecnologia e sociedade: uma revisão sistemática da literatura. Revista brasileira de educação em ciências e educação matemática, Cascavel, v.

- 5, n. 1, p. 129-151, 2021. Disponível em: DOI: https://doi.org/10.33238/ReBECEM.2021. v.5.n.1.26935. Acesso em: 23 fev. 2025.
- SANTOS, P. C. A utilização de recursos audiovisuais no ensino de ciências: tendências entre 1997 e 2007. Dissertação (Mestrado em educação) Universidade de São Paulo, São Paulo, 2010. Disponível em: https://www.teses.usp.br/teses/disponiveis/48/48134/tde-26042010-092942/en.php. Acesso em 01 mar. 2025.
- SANTOS, S. L. S.; VASCONCELOS, R. R. M.; DANTAS, J. K.. potenciais pedagógicos do anime "Hataraku Saibo (Cells At Work!)" para o ensino de imunologia. In: Congresso Nacional de Educação, 6., 2019. **Anais eletrônicos** [...]. Fortaleza/CE, 2019. Disponível em: https://www.editorarealize.com.br/editora/anais/conedu/2019/TRABALHO_EV127_MD4_S A12 ID9973 26082019173336.pdf. Acesso em: 24 fev. 2025.
- SILVA, H. M. Cells at work: uso de animes no ensino de fisiologia. In: CONGRESSO NACIONAL DE EDUCAÇÃO, 5., 2018. Recife. **Anais eletrônicos** [...]. Recife, 2018. Disponível em: https://www.editorarealize.com.br/editora/anais/conedu/2018/TRABALHO_EV117_MD1_SA16_ID7634_29082018021655.pdf. Acesso em: 10 jan. 2025.
- TORRES, C. I. O. *et al.* Uso do anime Hataraku Saibou (Cells at Work!) numa proposta metodológica para o ensino de biologia. **Revista Eletrônica Ludus Scientiae**, v. 5, 2021. Disponível em: https://doi.org/10.30691/relus.v5i1-2.2835. Acesso em: 10 jan. 2025.