

PROBABILIDADE NO SIGNIFICADO FREQUENCISTA: CONCEITUANDO NOÇÕES BÁSICAS DESSE CONCEITO POR MEIO DE UM ENFOQUE EXPERIMENTAL

César Diogo Bezerra da Silva

Universidade Federal de Pernambuco-CAA, email: cesar.diogo.b.silva@hotmail.com

Cléber Fernando Silva e Lima

Universidade Federal de Pernambuco-CAA, email:cleberfernandolima@gmail.com

Francielly Monick Cavalcanti Viana

Universidade Federal de Pernambuco-CAA, email: fran.ci.ellycielly@hotmail.com

Emersom Wanderlei Silva de Melo

Universidade Federal de Pernambuco-CAA, email: e_wanderlei@hotmail.com

Cristiane de Arimatéa Rocha

Universidade Federal de Pernambuco-CAA, email:tiane rocha@yahoo.com.br

RESUMO: Este trabalho apresenta os resultados de uma atividade introdutória sobre probabilidade. A aula se deu no âmbito do PIBID e contou com a participação de 31 alunos do 2º ano do Ensino Médio de uma escola do município de Caruaru/PE. A atividade foi realizada a partir do sorteio de bolas em urnas e por meio da resolução de um questionário. Os autores trabalharam a partir do significado frequencista de probabilidade, explorando noções básicas de probabilidade como a percepção da aleatoriedade na compreensão de experimentos aleatórios e determinísticos, eventos pouco e muito prováveis e também apresentaram a definição de probabilidade a partir do significado clássico. Como resultados apontam que os alunos apresentam respostas que apontam para a compreensão das noções básicas mencionadas, mas que não compreendem que os dados obtidos em experimentações anteriores não influenciam a probabilidade de um próximo ensaio. Os autores defendem o estudo da probabilidade, em um momento inicial, com um caráter experimental e destacam que a aplicação da aula contribuiu para a formação docente desses autores.

Palavras-Chave: Probabilidade, PIBID, Significado Frequencista.

INTRODUÇÃO

Os estudos tratando da probabilidade surgem, na escola, com a finalidade de atender a necessidade do raciocínio crítico nas situações de incerteza em que o estudante está inserido.

É necessário que o professor esteja atento as práticas educativas necessárias para a boa construção do conceito de probabilidade em sala de aula. O professor que ensina a probabilidade deve levar em conta

O planejamento de uma lição para ensinar aos alunos probabilidade utilizando um determinado dispositivo instrucional para desenvolver o conhecimento profissional dos professores sobre probabilidade. (BATANERO E DÍAZ, 2012, p.9, apud, SILVA E FELISBERTO DE CARVALHO, 2014).

Compreendemos que o Programa Institucional de Bolsas de Iniciação à Docência – PIBID possui contribuições ricas para a formação do futuro professor. Ele permite que o licenciando tenha contato, ainda durante a graduação, com o espaço ao qual será inserido e atuará. Além disso o PIBID é uma oportunidade de aproximação entre a Escola e Universidade.

O auxílio tecnológico pode ser utilizado pelo professor como estratégia de ensino na condução de sua aula e na construção das noções e propriedades atreladas a um conceito. Para Chaves (1999), citado por Costa e Schimiguel (2012), Tecnologia se refere a tudo aquilo que o ser humano inventou, tanto em termos de artefatos como de métodos e técnicas para estender sua capacidade física, sensorial, motora ou mental.

Utilizamos como ferramentas tecnológicas para essa atividade urnas e bolas pretas e brancas, além de um simulador. Essas tecnologias subsidiaram o enfoque experimental pretendido em nossa atividade .

Tratando do estudo da probabilidade, Batanero (2005) destaca em seu trabalho a

importância dos significados de probabilidade para a formação do conceito desse conteúdo. Os significados apontados por ela são: significado intuitivo, significado clássico, significado frequencista, significado subjetivo e significado formal. Defende que o estudo da probabilidade deve perpassar por tais significados de modo que vislumbrar todos eles pode contribuir para uma melhor aprendizagem do conceito de probabilidade.

Coutinho (2002) sugere que a introdução do estudo probabilístico se dê a partir do significado frequencista. Como nosso trabalho se trata de um momento introdutório, apresentamos a seguir apenas as definições dos significados clássico e frequencista conforme Batanero (2015). O significado clássico será aqui tratado, pois utilizamos o significado frequencista para chegarmos a definição do significado clássico.

O significado clássico de probabilidade trabalha esse conceito a partir da regra de Laplace. Dado um espaço amostral finito e equiprovável (quando os eventos elementares possuem a mesma probabilidade), e sendo n(A) o número de elementos de um evento A e $n(\Omega)$ o número de elementos do espaço amostral, definimos a probabilidade no significado clássico pela seguinte expressão:

$$P(A) = \frac{n(A)}{n(\Omega)}$$

Supondo que ao lançar um dado com 6 faces numeradas de 1 a 6 um estudante deseja saber a probabilidade de obter a face voltada para cima com o número 5, então temos que n(A) = 1 e $n(\Omega) = 6$, portanto probabilidade desse aluno observar a face 5 voltada para cima é igual a $\frac{1}{6}$.

Esse tipo de cálculo limita-se tendo em vista que para espaços amostrais infinitos ou não equiprováveis não é possível a utilização desse significado.

O significado frequencista deu suporte ao enfoque experimental que desejamos com a realização dessa atividade. Esse significado define a probabilidade de um evento A a partir da

frequência absoluta que corresponde a quantidade de vezes que esse evento aconteceu em uma grande quantidade de realizações desse experimento nas mesmas condições.

Se realizarmos um determinado experimento N vezes, sendo N_A a frequência absoluta que corresponde ao evento A e tivermos uma frequência estabilizada desses resultados, então a probabilidade do evento A é um valor aproximado da expressão:

$$P(A) \cong \frac{N_A}{N}$$

Se fizermos o número N de realizações do experimento tender ao infinito, então a probabilidade é desse evento é dada por:

$$P(A) = \lim_{n \to \infty} \frac{N_A}{N}$$

Suponha que um grupo de estudantes lançou uma tachinha 1000 vezes e observou que em 693 das realizações ela caiu com a ponta no chão. Considerando que essa frequência está estabilizada e utilizando o significado frequencista, temos que a probabilidade de lançarmos essa tachinha e ela cair com a ponta no chão é aproximadamente $\frac{693}{1000}$ ou 69,3%.

Algumas dificuldades surgem ao se trabalhar a probabilidade no significado frequencista, seja o fato de que não sabermos exatamente o número de vezes que um experimento deve ser repetido para que a frequência esteja estabilizada, seja em conseguir realizar um experimento um grande número de vezes nas mesmas condições.

Silva e Felisberto de Carvalho (2014) apresentam os resultados de sua pesquisa com estudantes universitários envolvendo o jogo Igba-Ita. Na situação os autores trabalharam algumas noções de probabilidade a partir de um enfoque experimental e revelam que os estudantes em questão apresentam dificuldades em relação a tomada de decisões e a construção do espaço amostral. Os autores consideram importante o trabalho da probabilidade a partir de diversos contextos.

A compreensão das noções que envolvem a aleatoriedade são importantes no estudo probabilístico. Amâncio (2012) utilizou uma sequência didática no âmbito do PIBID e destaca que os sujeitos envolvidos na pesquisa diferenciaram características de experimentos aleatórios e determinísticos, mas que apresentaram dificuldades em trabalhar com a realização de experimentos simultâneos e com conteúdos como notação de intervalos, símbolo de infinito, notação de conjuntos e expressões do tipo "pelo menos um".

A justificativa para esse trabalho está no fato de que diversas vezes em nosso dia-a-dia nos deparamos com situações de incertezas que exigem a tomada de decisões. Daí, surge a importância do estudo probabilístico.

O objetivo desse trabalho é apontar os resultados de uma atividade introdutória no estudo da probabilidade contemplando algumas noções básicas de probabilidade como o conceito de experimento aleatório, eventos possíveis e impossíveis, eventos pouco prováveis e muitos prováveis e a definição da regra de Laplace.

METODOLOGIA

A experiência se deu no ano de 2014 e contou com a participação de 31 alunos do segundo ano do ensino médio da Escola Estadual Nicanor Souto Maior, localizada na cidade de Caruaru-PE, com a intervenção de um grupo atuante no PIBID no subprojeto da UFPE Matemática -CAA. O grupo atuante é composto por Licenciandos em Matemática pela Universidade Federal de Pernambuco – Centro Acadêmico do Agreste (UFPE-CAA).

Os autores discutiram os referenciais teóricos mencionados nesse artigo para a elaboração do plano de aula e posteriormente para a análise dos resultados obtidos.

Os alunos envolvidos nessa pesquisa receberam urnas com bolas pretas e brancas para a realização de alguns sorteios. Além disso, os autores utilizaram um programa desenvolvido em C++¹ para a simulação de ensaios semelhantes ao experimento realizado na atividade.

Para a coleta de dados os autores utilizaram um questionário tratando da aleatoriedade

¹ Software utilizado para a criação de programas computacionais.

de um experimento através do significado frequencista. Os alunos dividiram-se em 8 grupos de 3 a 5 pessoas.

ANÁLISES E DISCUSSÕES

Inicialmente os integrantes de cada grupo realizaram sorteios, repondo as bolas e repetindo o experimento várias vezes e fazendo anotações sobre eles. Utilizaram uma urna com 5 bolas pretas e 5 bolas brancas e outra urna com 3 bolas pretas e 7 bolas brancas para comparar a probabilidade de cada bola com a quantidade de bolas da cor correspondente em cada urna.

Enquanto os alunos realizavam os sorteios, os licenciandos propuseram que eles respondessem o questionário. Uma das questões perguntava aos grupos, antes da socialização com a sala toda, se seria possível determinar a cor da bola que obteríamos caso sorteássemos uma bola.

Dos grupos formados tivemos que 6 deles responderam a essa atividade. O que mais nos chamou a atenção é que 5 deles nos apresentaram argumentos que levaram em conta fatores que apontam para a percepção do acaso. Como exemplo destacamos a resposta dada pelo grupo 8 que segue na figura 1.

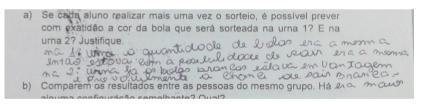


Figura 1 – Noção de experimento aleatório. Fonte: O Autor, 2015.

Destacamos a compreensão da imprevisibilidade em um sorteio de bolas coloridas em que há mais de uma cor na urna, pois percebemos que mesmo usando o termo chance para representar o que poderia acontecer como mais provável, o grupo respeitou a possibilidade de também não acontecer de sair bola branca, sucesso ao qual atribuíram maior chance. Com isso

acreditamos que os alunos compreendem as noções de experimento pouco provável e muito provável.

Após a discussão em grupo desse primeiro problema, socializamos os resultados de todos os grupos e formamos a tabela a seguir. Os resultados estão dispostos na tabela 1. Refizemos a pergunta do item (a) para analisar a resposta dada pelos alunos diante de um maior número de sorteios

Tabela 1: Resultado final dos sorteios de bolas coloridas em ambos os casos.

Urna 1. Mesmo número de bolas de cada cor		Urna 2. 7 bolas brancas e 3 bolas pretas		
Bolas Pretas	83	Bolas Pretas	36	
Bolas Brancas	72	Bolas Brancas	119	

Uma das dificuldades que os autores apontam está no fato de que os alunos se mostraram dependentes para a resolução do questionário e acabaram respondendo quando os autores pediram para responder determinada questão. Como o tempo da atividade foi curto e tendo em vista que precisávamos dar continuidade na aula, apenas 3 dos 8 grupos responderam esse item.

A figura abaixo, mostra o comentário do grupo 4, que fortifica a ideia de que esses alunos compreendem a imprevisibilidade no sorteio.

Figura 2 – Atividade envolvendo a compreensão de experimento aleatório. Fonte: O Autor, 2015.

A resposta dada pelo grupo é importante, pois se todas as bolas fossem da mesma cor poderíamos determinar, com facilidade, a cor da bola sorteada, mas o que acreditamos, além disso, é que o grupo atentou para a possibilidade de sair qualquer uma das cores, mesmo na

urna 2 em que há mais possibilidades de sair bolas brancas.

A resposta dadas pelos grupos 8 aproxima nossos resultados dos resultados apontados por Amâncio (2012), pois essas respostas indicam que os alunos diferenciaram características de experimentos determinísticos e aleatórios.

Conhecer os resultados de sorteios anteriores não nos garante saber a cor exata de um próximo sorteio. O item seguinte perguntava se a cor obtida em um sorteio anterior influencia a cor que sairia em um próximo sorteio. Apenas 2 grupos responderam e atribuímos aos demais grupos a mesma justificativa dada antes, em que os alunos responderam quando pedimos a eles que respondessem determinado item.

A seguir, a figura 3 mostra o comentário do grupo 3 para esse item.

Figura 3 - Não influência de resultados anteriores. Fonte: O Autor, 2015.

Apesar de ter apresentado a resposta correta, acreditamos que a justificativa dada pelo grupo pode apresentar uma falha na compreensão da atividade que envolve sorteio conhecendo resultados de experimentações anteriores, visto que eles não influenciam o resultado próximo sorteio.

Coutinho (1994) pontua que uma concepção errônea e que pode dificultar no estudo da probabilidade é o fato de alguns estudantes podem não compreender que a informação sobre dados de experimentos realizados anteriormente não influenciam no valor da probabilidade de um evento. Não é possível prever a cor da bola em um próximo sorteio, pois sabemos que há mais de um resultado possível e não porque os resultados anteriores estavam balanceados como aponta o referido grupo.

Para enfatizar que a diversidade de resultados possíveis é o que caracteriza o experimento como um experimento aleatório, os licenciandos sortearam bolas da urna,

comprovando, que não é possível determinar com exatidão a cor da bola sorteada. Para esse momento pensamos em sortear bolas de ambas as urnas obtendo resultados diversos. A tabela 2 mostra os sorteios obtidos pelos licenciandos.

Tabela 2: Sorteio de bolas realizado pelos licenciandos.

Urna 1	Preta	Branca	Branca	Branca	Preta
Urna 2	Preta	Preta	Branca	Branca	Branca

Fonte: O Autor, 2015.

O outro grupo que respondeu a esse item não apresentou justificativa. Após os comentários sobre esses itens, os licenciandos conceituaram experimento aleatório.

Utilizamos o simulador para obter a frequência absoluta do número de bolas de cada cor e para estimar a probabilidade de cada vento a partir do significado frequencista. Optamos um valor muito alto, 1.000.000 de sorteios na simulação, para a garantia da estabilização da frequência absoluta.

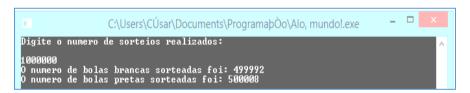


Figura 4 - Simulação Urna 1. Fonte: O Autor, 2015.

Figura 5 - Simulação Urna 2. Fonte: O Autor, 2015.

O último item do questionário tratava de estabelecer um valor para a chance de obtermos uma bola branca ou preta comparando os resultados obtidos nas frequências.

Nesse item, 6 grupos responderam a pelo menos 1 dos casos, urna 1 ou urna 2. A figura 6 mostra a resposta dada pelo grupo 1.

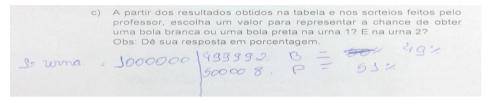


Figura 6 - Erro de aproximação. Fonte: O Autor, 2015.

Nos chama a atenção a resposta dada pelo grupo e acreditamos que esse fato pode estar ligado a dificuldade na escolha de critérios para aproximação. Embora a dificuldade apresentada nessa resposta esteja ligada a conteúdos diferentes apontados por Amâncio (2012), em que a autora destaca ter dificultado a compreensão dos alunos observados por ela, ainda assim a reflexão em cima dessas dificuldades reforça a necessidade em compreender que alguns conteúdos são pré-requisitos para o estudo da probabilidade.

A figura 7 mostra a resposta dada pelo grupo 2, com as frequências relativas para ambos os casos.

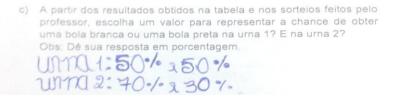


Figura 7 - Aproximação da frequência relativa. Fonte: O Autor, 2015.

Após os alunos resolverem esse item, os licenciandos discutiram sobre as respostas dadas pelos alunos e conceituaram probabilidade a partir da frequência estabilizada.

CONSIDERAÇÕES FINAIS

Optamos por trabalhar a partir da manipulação de objetos e simulação de experimentos. Utilizamos o significado frequencista para introduzir algumas noções de

probabilidade e para chegarmos a expressão do cálculo de probabilidade proposta no significado clássico.

Notamos que alguns estudantes apresentam respostas que apontam para a compreensão de noções como a compreensão de experimento aleatório e determinístico, eventos pouco prováveis e muito prováveis, noções essas que embasam o conceito de probabilidade.

Percebemos a necessidade em trabalhar atividades que envolvem dados obtidos em experimentações anteriores, tendo em vista que esses dados não influenciam a probabilidade de um evento em uma próxima experimentação. Definimos a regra para o cálculo da probabilidade proposta no significado clássico, embora a dificuldade na aproximação tenha se revelado uma dificuldade para um dos grupos.

Defendemos a inserção do estudo probabilístico e da conceituação de probabilidade a partir dos significados clássico e frequencista.

Concluímos, que a realização da atividade contribuiu para a formação dos licenciandos que estiveram ligados a essa atividade e que os alunos puderam formalizar algumas noções do estudo da probabilidade.

REFERÊNCIAS

AMÂNCIO, J. R. **Planejamento e Aplicação de Uma Sequência Didática Para o Ensino de Probabilidade no Âmbito do PIBID**. 2012. 216p. Dissertação (Mestrado em Ensino de Matemática) — Pontifícia Universidade Federal do Rio de Janeiro, Rio de Janeiro, 2012.

BATANERO, C. Significados de La Probabilidad en La Educación Secundária. **Relime:** vol. 08, num 3, pp. 247-263, nov, 2005.

COSTA, C. H. J; SCHIMIGUEL, J. **Uso de Novas Tecnologias na Educação Matemática: O Professor e a Webquest**. In: Anais do Simpósio Nacional de Ensino de Ciência e Tecnologia, 3, Ponta Grossa, 2012. Disponível em: http://www.sinect.com.br/anais2012/html/index.html>. Acesso em 25 jul. 2015.

COUTINHO, C. de Q. e S. Introdução ao Conceito de Probabilidade por uma Visão Frequencista. 1994. 151p. Dissertação (Mestrado em Matemática) — Pontifícia Universidade Católica de São Paulo, São Paulo, 1994.

SILVA, C. D. B; FELISBERTO DE CARVALHO, J. I. O Jogo Igba-Ita e a Construção do

Conhecimento Probabilístico. In: Anais do Encontro Estadual de Educação Matemática do Rio de Janeiro. Rio de Janeiro, 2014. 1 CD.